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Control System Loop
Gain Measurements

Application
Note 243-5

the best ways to deter-
the characteristics of a
ntrol system is to measure the
oop gain of the system. Both
gain and phase stability margins
can be determined from this
measurement, along with the dc¢'
loop gain value and the gain
crossover frequency. It is also a
common practice to design
stability compensation networks
based upon the loop gain charac-
teristic. Finally, the loop gain of
the system is extremely impor-
tant when defining or refining a
model for the control system.

Unfortunately, it is often difficult
or impossible to actually open
the loop to measure the loop

gain directly. Generally, the
control system must be operat-
ing in a normal manner during
the measurement to maintain
the proper dec operating point
and to minimize distortion. This
implies that normal operating
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signals will be present at each
point around the loop during the
casurement. It also implies
any added test signal must
ipt small enough that the
frmal loop operation is not
nduly disturbed.

The intent of this note is to
describe several methods of
measuring the loop gain of a
control system while the loop is
closed and the system is operat-
ing. Many different measure-
ments will be discussed. This
exposure to the wide variety of
possibilities should prove useful
when deciding which measure-
ment technique to use. The
mathematical derivation of the
properties of each method will be
omitted for simplicity?®.

It is recognized that
nonlinearities and distortion are
important in control system
testing, but it is beyond the
scope of this note to cover these
topics. Reference [1] provides
some help in these areas.

'Direct current. In this note, “d¢” will be
used to refer to the frequency zero Hertz.

*These details are available in reference 3]
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Loop Gain

Loop gain is the term used to
descibe the product of the gains
of the elements in the control
loop that is being investigated.
The loop gain of the generic
control loop shown in figure 1 is
equal to G,G,H where the G,
elements are in the forward path
and the H element is in the
feedback path. Because of this
definition, the expression “GH”
will be used to indicate “loop
gain” throughout the rest of this
note.

As a rule, there are at least
three regions of interest in the
loop gain measurement. Gener-
ally, the region of most interest
is near unity gain, where both
gain and phase margins are
measuared. Nearly all of the
measurement techniques to be
discussed work well in this
region. As an additional bonus,
the ratio of the standard devia-
tion to the expected value of the
loop gain measurement (called
noise-to-signal ratio in this note)
tends to be smallest here.

The next interesting region is
often near dc, where the magni-
tude of the loop gain tends to be
large and where a low frequency
pole is often located. The actual
dc loop gain magnitude deter-
mines the steady state error in
the output of the control system.
Large loop gain magnitudes tend
to be difficult to measure. Some
methods are much better than
others for making measure-
ments in high-gain regions.

This will be discussed in more
detail later in the note.

The third area of interest is in
the high frequency region (near
or beyond the gain crossover
point) where problems with
control system resonances tend
to be most severe. Unfortu-
nately, in this region the loop
gain magnitude is often small, so
the noise-to-signal ratio on the
measurement may be relatively
large.

Figure 1
Block diagram
of a generic
control loop,
showing the
standard
notation for
signals and
elements.

3Measurements built around the Swept
Fourier Trans$form are sometimes called
Swept Fourier Analysis or SFA methods.

Measurement Methods

There are many different ways to
measure the loop gain. The
decision of exactly which one to
use in a particular case depends
upon several factors. No matter
which method is chosen it is
necessary to be able to inject a
test signal (usually called the
excitation signal) into the loop
and measure the signal that is
present at two (or more) places in
the loop. The excitation may be
injected into the loop by replacing
the normal reference signal, R, or
by using a summing junction. If
there is not an unused input on
an existing summing junction, a
new summing junction can be
added to the control system. The
added summing junction can be
either inside the control loop
(internal junction) or outside the
loop (external junction).

In general, there are two basic
“types” of measurements that can

be performed: measurements built

around the Fast Fourier Trans-

form (FFT) and those built around

the Swept Fourier Transform®
(SFT). These types of measure-
ments are often distinguished by
the characteristics of the excita-
tion signal needed. In this note,
“broadband excitation” implies
measurements based on the FFT,
while “swept sine excitation”
implies measurements based on
the SFT. A brief comparison of
these two techniques is included
in appendix A.
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Three techniques for injecting
the test signal from outside the
loop (“external” techniques) are
shown in figure 2. Two ways to
inject the signal inside the loop
(“internal” techniques) are
shown in figure 3. This note
describes measurement methods
that are based upon the block
diagrams shown in figures 2b
and 3a. When using any other
injection technique, these
equations will have to be re-
vised.

In either case, only certain
signal pairs (two of the three
terminals of the injection device,
for instance) may be available or
convenient for use in the mea-
surement. Eight methods are
actually needed to cover all
possible combinations of signal
pairs, and each of these methods
can be implemented using either
swept sine or broadband excita-
tion. There are five possible
pairs of signals that can be used
with an external summing
junction, and there are three
possible pairs that can be used
with an internal summing
junction. In addition to this
minimum set, two extra methods
are included (3 and 16) because
of their popularity, they require
fewer computations and are
easier to understand. Hence
there are a total of 18 methods
listed in table 1.

These 18 methods are ranked in
order of measurement quality, so
that the best possible technique
can be selected for the loop gain
measurement, depending upon
the selected summing junction
location and the available signal
pairs. This ranking is somewhat
flexible and depends upon
variables such as the frequency
region of interest, location and
magnitude of disturbances
(noise), analyzer accuracy,

(A)
(B)
I|
;‘ (0
| .
| External Injection Techniques
(A)
(8)

Internal Injection Techniques

Figure 2
Injecting the
excitation at a
point outside
the mainloop
will be very
convenient for
many control
systems.

Figure 3

Some control
systems do not
have an
accessable
error summing
junction. The
excitation must
be injected at a
point inside the
loop in these
cases.



magnitude of the reference
signal, and also the magnitude
of the loop gain. Each user may
need to rank these methods
differently to reflect the priori-
ties of a particular application.
In any event, the ranking
presented in this note should be
used as a guideline, not as an
inflexible rule.

Some of the many factors that
can cause errors in the measure-
ment will be summarized for
each method, and calibration
techniques will be described to
minimize these errors. In
general, methods that introduce
any significant bias in the loop
gain estimate are ranked low,
along with methods that have
unusually large values of vari-
ance.

As a general rule, any of the
methods will work fine if the
loop-gain magnitude is less than
about 30, and if the ac® signal
power on the reference input
and on any internally generated
loop-noise source is sufficiently
small compared to the injected
test-signal power. In two cases
(methods 3 and 16), the refer-
ence-signal power and the power
from other noise signals will
cause a bias in the loop-gain
measurement, and in several
cases these signals contribute
extra variance to the gain
estimate. If the loop gain is very
large, some methods may be
heavily biased, and in some
cases the variance can be exces-
sively large.

‘Alternating current. In this note “ac”

means “at all non-zero frequencies” or “at all

frequencies above de.”

5This is a simplification of the complete
“rule.” For the full details, please see the

Basic Control Loop
Testing

Figure 1 shows the block dia-
gram of a basic control system
and also shows the terminology
used for the various signals.
This terminology is compatible
with that used in reference (2],
Hewlett-Packard Application
Note 243-2: Control System
Development Using Dynamic
Signal Analyzers.

The loop comprises a forward
gain section consisting of two
elements, G, and G,. The total
forward gain is the product of
these two which is G G,. The
loop also has a feedback section
denoted by H, and a primary (or
error) summing junction. This
summing junction is where the
feedback signal, B, is subtracted
from the desired reference sig-
nal, R, giving the error signal E.

Figure 4 shows the Nyquist or
GH-plane, where GH=G G,H is
the loop gain of the system. It is
convenient to think of GH as a
complex number that varies as a
function of frequency. Each
control loop characteristic can be
plotted as a locus of complex
values on the GH-plane (called
the Nyquist plot). The locus
shown in figure 4 is an example
of a two-pole transfer function
having a dc gain of 400. The
frequency increases along the
locus starting at the dc point. It
is important that the locus of
loop gain does not encircle the
point (-1,0), or the system will be
unstable®,

Figure 4

A typical Nyquist
plot (GH-plane) of
a second order
control loop
having a dc-loop
gain of 400.

discussion of the Nyquist Stability Criterion
that can be found in reference [2] or in most
textbooks on Classical Control Theory.



Test Signal Injection

If possible, loop measurements
should be made by replacing the
reference signal R with the
desired excitation signal S as
shown in figure 2a. The most
significant advantage of this
approach is that it eliminates
the possibility of the reference
signal affecting the measure-
ment. Note that it is nearly as
beneficial to keep the reference
signal at a constant dc value.

If this is not possible, then an
additional external summing
junction can be inserted as
shown in figure 2b or 2¢. Alter-
nately, an internal summing
junction can be inserted as
shown in figure 3a or 3b. In
these figures the forward gain
block, G, has been split into two
parts G and G,, to illustrate
that the summing junction can
be located inside of G, if neces-
sary. In general, the internal
summing junction can be in-

serted anywhere within the loop.

The primary concerns are the
ability to match the input and
output impedances of the circuit
under test and the convenience
of inserting the summing junc-
tion at that particular point.

It is helpful to keep the ampli-
tudes of the various signals in
mind when planning a control
loop measurement. When the
loop gain is high®, the error
signal E is small compared to R
and B which are nearly equal in
magnitude. When the loop gain
is low, B is the small signal, and
R and E are nearly equal. In
either case, the relative error
between the two measurement
channels will have an exagger-
ated effect upon the loop gain if
a pair of nearly equal signals are
used. It is generally best to
choose a pair of signals having
dissimilar amplitudes whenever
possible.

Measurement Procedure
The control system loop gain
information is carried by various
pairs of signals in the control
loop, leading to the eighteen
measurement methods that are
discussed in this note. Note,
however, that most of these
techniques do not measure the
loop gain directly. Instead, the
loop gain must be calculated
from the measurement.

A typical FFT-type analyzer
measures the frequency re-
sponse between two points in a
system by forming the ratio
between the cross-power spec-
trum between the channels, and
the auto-power spectrum for
channel one’. This measured
frequency response is called T in

*Roughly speaking, a system may be

considered as having “high gain” when the

loop gain gets greater than 20 to 30 dB
(k=10 to k=30).

"This technique is often called the

“trispectrum average” technique because of

the need to average the three spectrums

mentioned above. Reference [4] has more

information on this subject.

this note. Of the 18 methods
discussed in this note, 10 are of
the FFT type. In eight of these
the loop gain estimate, GH, is
determined by performing
calculations on T.

In the other two methods, GH is
calculated directly from the auto-
power spectrums and the cross-
power spectrum that were
measured. One easy-to-visualize
advantage of this approach is
that it is possible for these
calculations to use the channel 2
auto-power spectrum, thus
utilizing information that is not
used when computing the
frequency response, T, by means
of the trispectrum average
technique.

Table 1 lists the various methods
discussed in this note. The
indicated figure gives a graphical
view of the connections. Also
shown are the calculations that
are required to compute GH. In
some analyzers, these calcula-
tions can be performed automati-
cally as part of the measurement
procedure using the built-in
waveform math feature.



Summary of
Methods

A% T
g & &G(\ & e B .
 FEy &S S & F &8 & & ¥
& S &
T @Q W T & ¢
BE* B(B+E)* No bias, > ; Identical to no. 10
I B+E 1| 6 = E(_B_—-’rE)-: mininum L2 aBet S nl L 10 & - TA
|E] variance 1S (1+T)
BS* - No bias, low i low bias, medium
2 %BSE:, 3-8 T Vi variance i i ol A ZS,* _]'ﬁT variance
N T
Potential bias
BE* & ! !
AR BT IR == T TS 75w 14+F Identeical to no.
|E| variance 130255 7 11 |——2 i ¥ 12
. S|
TRy e el Lovtfbias,lgw
s | AR variance =3 Iy
- 4 14 Y-Z 6 12 ).I_Zj Y(r-2) Low bias, medium
iz|* Z(Y-Z) variance
bid» of Low bias,
S EBfA 2. TS i 7 minimum e
|4] variance Ys* ; )
15 YSZ 6 12 — -T Similar to no. 14
S
ES* - 4jlgR Low bias, low
ORESS 8 ? T variance
IS YZ* ~ i,
16-F 213512 o s Potential bias,
el Sy Indenticalto |Z] medium variance
IS|2 7 no. 6 T :
¥
17 Srssih0 e X Potential bias,
Bhss. T Potential bias, |S! (1 = high variance
b il 5+ 1T high variance
s =
" S ekt il L e ke ZS= (L |dentical to no. 17
Ba% T otential bias, |3]2 =
9 B/A 8 9 |A|2 1—T high variance
BS* T Potential bias,
157 BSS: 110 |§|7 1-T high variance
Table 1




@

Sources of Potential Error
Regardless of which measure-
ment technique is selected (see
appendix A for a discussion of
broadband and swept-sine
techniques), it is important to
choose a conjugate spectrum
that is both coherent with the
test excitation signal and as
incoherent as possible with the
noise component of either the
numerator or the denominator
spectrum. Otherwise, a bias will
be introduced into the spectral
average when the product is
formed. This is the problem
with methods 3 and 16 as
indicated in table 2.

Different measurement methods
do not have the same potential
for error. Swept sine methods,
for example, use the conjugate of
the source as the secondary
spectrum in these products.
Since the source is noise-free by
definition, the swept sine meth-
ods have no bias due to the
various noise sources in the
control system (unless there are
discrete sinusoids generated
internal to the loop).

Some broadband methods also
use the source spectrum in the
spectral products, so there is no
noise bias for these methods
either. However, other broad-
band methods are forced to use
the conjugate of either the
numerator or the denominator
spectra for the conjugate compo-
nent. This means there is a
potential bias in the resulting
spectral averages and in the
final frequency response calcula-
tion.

Even if bias due to noise is
eliminated, there are still
sources of possible bias due to
mismatch between the two
analyzer input channels and/or
imperfections in the added
summing junction. There are
also bias errors associated with
leakage that often occur when
using a transformer as a sum-
ming element. Careful attention
should be paid to these elements
to minimize the errors associ-
ated with these components.

Of course, there are always
random errors (as opposed to
bias errors) caused by noise in
the system. Some measurement
methods are more sensitive to
this noise than others. In all
cases, this random error can be
reduced either by averaging or
by integrating for longer inter-
vals of time.

In principle, many of these errors
can be measured and subsequently
removed in a calibration step
described later in this note. Unfor-
tunately, for the lower six methods
in the decision tree (figure 5), it is
not practical to perform this cali-
bration step accurately enough to
allow good measurements when the
loop gain magnitude is large. Table
5 gives maximum practical values
of loop gain magnitude for each
method, and only those preceded by
an asterisk can be used when the
loop gain magnitude is large (>30).

In figures 6 through 13, the sources
of errors that were assumed in this
work are shown in dotted boxes.
The dotted summing junctions do
not represent real hardware
summing junctions but rather
imaginary or effective summing
junctions that are used to illustrate
where noise is assumed to be
injected.



The 18 Methods

The various properties of inter-
est for all of the methods are
summarized in tables 1 through
5, and the associated block
diagrams for each method are
illustrated in figures 6 through
13. Figure 5 is a decision tree
that can be used to select the
best methods, given the avail-
ability of an internal or external
summing junction, and various
pairs of signals that can be
probed.

In these tables, a caret (*) over
any quantity denotes an esti-
mate (or measure) of that
quantity, and a tilde (~) denotes
a calibrated version of that
quantity. An overbar (-) denotes
an averaging operation, and an
asterisk (*) denotes a complex
conjugate. The notation E[ }
denotes the expected value of a
random variable (estimated or
measured quantities are random
variables).

Table 1 assigns an identification
number and a name to each
method, and lists the rank and
figure designation associated
with that method. In addition,
the table shows the calculations
that must be performed to
obtain an estimate of the loop
gain. Methods 3 and 16 would
normally be replaced by methods
1 and 14, respectively, but are
included because they are
sometimes selected by users.

A decision tree for
selecting the best
method to use

in characterizing
the loop gain of

a control system.
The selection is
based upon the
choice of either an
internal or an
external summing
junction and upon
the pairs of signals
in the loop that are
available.
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Figure 6

Block diagram of a control system,
showing the added external summing
junction and the analyzer connection
points for the B+E, BSE, and B/E
methods.

Figure 8

Block diagram of a control system,
showing the added external
summing junction and the analyzer
connection points for the ESS and
E/S methods.

Figure 7

Block diagram of a control system,
showing the added external
summing junction and the analyzer
connection points for the ESA and
E/A methods.

Figure 9

Block diagram of a control system,
showing the added external
summing junction and the analyzer
connection points for the BSA and
B/A methods.




Mthods_j(l(BSS) and 11{B/S)

Methods 12(2/5) and 13(Z55)

Figure 10

Block diagram of a control system,
showing the added external
summing junction and the analyzer
connection points for the BSS and
B/S methods.

Figure 11

Block diagram of a control system,
showing the added internal
summing junction and the analyzer
connection points for the Z/S and
ZSS methods.
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Interior 14(Y-Z), 15(Y/Z) and 16(YSZ) Methods

Bty

Methods 17(YSS) and 18(Y/S)

Figure 12

Block diagram of a control system,
showing the added internal
summing junction and the analyzer
connection points for the Y-Z, Z/Y,
and YSZ methods.

Figure 13

Block diagram of a control system,
showing the added internal
summing junction and the analyzer
connection points for the YSS and
Y/S methods.




Expected Value of Loop Gain
Table 2 lists the expected values
of the loop gain estimates (as
though an infinite number of
averages were used in making
the measurement). It is neces-
sary to refer to the figure with
the proper block diagram to
understand the parameters that
appear in these expected value
equations. The total power in
each of the various signals is
denoted by sigma squared.
Thus,

0‘2 is the total power in the
excitation signal S

c; is the total power in the
reference signal R

cé is the total power in the
internal loop noise source N,

O is the total power in the
internal loop noise source N,

o} is the total noise power in
channel 1 of the analyzer

G; is the total noise power in
channel 2 of the analyzer.

The internal loop noise signals
N, and N, represent any distur-
bances that might come from
outside the loop, as well as any
noise sources that are intrinsic
to components within the loop.
Noise contributions from other
places in the loop can be refer-
enced to either N, or N, by the
application of a suitable fre-
quency response transformation
to the actual noise spectrum.

Keep in mind that GH is the
ideal result for each of these
estimates. Each expression is a
mapping of the expected value of
the actual measurement onto

11




the ideal GH-plane. If there
were no errors, this would be an
identity mapping. The simplest
type of error is a scaling error, as
indicated for method 2, in which
case the mapping is simply an
expansion or contraction of the
GH-plane around a common
origin. Methods 4, 5, 6, and 7
also include an offset or bias in
the estimate, so in addition to an
expansion or contraction, this
mapping also involves a transla-
tion of the origin.

Methods 8, 9, 10, and 11 involve
a bilinear transformation, in
which GH appears in a linear
manner in both numerator and
denominator. This is a mapping
in which straight lines in the
GH-plane are transformed into
circles in the estimated or E[GH]
plane. Figure 14 shows an
example of this effect. Here a
measurement error of 0.998 is
assumed® and the resulting plot
is compared against the true, or
ideal plot. Note that since the
ideal plot is the same 2nd-order
control loop that was introduced
in figure 4, it is apparent that
the magnitude of GH increases
as the frequency approaches dc.
Thus the fact that these two
plots diverge as the frequency

approachs dc can also be inter-
preted as “the larger the loop
gain, the larger the measure-
ment error.”

Figure 15 shows the same
Nyquist plots with the mapping
coordinates superimposed,
indicating in a graphical way the
cause of the error due to this
channel mismatch. For ex-
ample, the original point (500,
500) on the GH-plane maps into
the point (300,100) on the E{GH]
plane, and the original point
(500,0) maps into the point
(250,0).

Figure 16 shows the same
mapping on an expanded scale,
with a true dc-loop gain of 80
and an estimated de-loop gain of
approximately 70. The errors
become smaller as the loop gain
approaches unity, but even for a
de-loop gain of 30, the error is
approximately -5.7%. In prac-
tice, the channel match will be a
complex number as a function of
frequency, so the actual mapping
will be somewhat more complex
than indicated here, and may
include a rotation of the basic
keystone pattern.

The expression for method 16 in
table 2 stands out as being
particularly complicated, al-
though this is one of the most
straightforward methods in the
list. The expected value for this
method is biased by reference

8If all of this error was caused by the
analyzer making the measurement, this
represents a channel-to-channel mismatch
of 0.2%.
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signal power, internal loop noise
power, and the noise power in
channel 1 of the analyzer. For
small to medium values of loop
gain, the bias is mostly due to
the reference signal. When the
reference signal power becomes
significant compared to the
excitation signal power, there is
a bias in the expected value of
the loop gain for all values of
gain. Thus, this method is not
recommended in this situation.
Method 3 has somewhat similar
behavior, as indicated by the
expected value expression in
table 2.




Figure 14

The GH-plane, showing the

correct Nyquist plot as a dashed line
and the measured plot as a solid line,
using one of the methods 8, 9, 10, 11,
in which the analyzer channel match
is less that unity (0.998).

Figure 16

This is a mapping of the expected
value of GH onto the GH-plane as in
figure 13, except the scale is
expanded to show the region around
the origin. The true loop gain is 80,
and the analyzer channel match
remains at 0.998.
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Figure 15

The solid coordinate lines represent the
mapping of the expected value of GH
onto the GH-plane, using one of the
methods 8, 9, 10, 11, in which the
analyzer channel match is set to 0.998,
The GH-plane rectangular grid lines are
transformed into orthogonal circles by
this mapping, with the point (500,500)
mapping into the point (300,100).



Noise-to-Signal Ratio of Loop
Gain Estimate

Table 3 lists the ratio between
the standard deviation and the
expected value of the estimated
loop gain for all of the methods
of interest. This is called a
noise-to-signal ratio, even
though the “signal” is actually
the expected value of GH. Some
of these expressions are more
complicated than others, but
they all have a very similar
form. They all have a zero near
GH = -1, and they become
infinite somewhere near GH = 0.
They all grow in a linear manner
with respect to GH, for large
values of GH, and they are all
reduced by the square root of the
number of averages used in
estimating GH.
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There are differences in the
scale factors, determined by the
various signal power quantities,
and in the corner frequency
where the turn-up begins, so
some methods are better than
others. However, figures 17 and
18 can be used to study the
general behavior of the noise-to-
signal ratio of all the methods.
Figure 17 shows the GH-plane
with a dotted coordinate system,
and the noise-to-signal ratio
surface 1s plotted above this
plane. A typical Nyquist plot is
shown on both the base GH-
plane and on the noise-to-signal
ratio surface.

As indicated in figure 17, the
noise-to-signal ratio tends to be
best near the gain-crossover
point and near the region where
the gain and phase margins are
measured. Thus, the most
accurate measurements of the
loop gain occur in this unity gain
region. The various methods
differ considerably in the actual
values of the noise-to-signal
ratio for any given value of loop
gain. Expressions for this
quantity are given in table 3 for
each method.

Figure 18 shows a cut along the
real GH axis of this same noise-
to-signal ratio plot. The zero at
the point (-1,0) is apparent, as is
the discontinuity at the origin.
Note the linear growth with GH,
as GH becomes large.

Methods 3 and 16 are omitted
from table 3 because both
methods may be replaced by
better methods (methods 1 and
14 respectively). Also the results
for both methods are rather
complicated. See reference [3]
for these expressions.
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Figure 17

This is a plot of the
noise-to-signal ratio
on the measurement
of GH, along with
the base coordinates
in the GH-plane as
dotted lines,
showing a typical
Nyquist plot on both
surfaces. Note the
null at the point of
instability (-1,0).

Figure 18

This is a cross-
section along the
real GH axis of
the noise-to-
signal ratio
displayed in
figure 18, showing
the asymptotic
behavior for large
values of GH.



Calibration

Table 4 lists the calibration
conditions needed to remove the
various error contributions from
the measurement by means of a
calibration® procedure. To use
these, the variables listed in
column 2 under Calibration
Conditions must be measured.
After measuring these param-
eters one or more of the param-
eters must be adjusted until the
expression listed in table 4 is
true. The actual measurement
of T can now be performed.

Alternatively, calibration “con-
stants” can be defined and
applied to the measurement
results (the power spectrums,
cross spectrums, and linear
spectrums. Remember, though,
that these “constants” will, in
general, vary as a function of
frequency. Also remember that
no measurement is perfect. The
indicated calibration conditions
can, if successfully implemented,
improve the accuracy of the
estimate of GH. However, this
should not be used as an excuse
for not paying careful attention
to the measurement setup. In
most cases, acceptable results
can be achieved without formally
considering these conditions.

Whenever this calibration step is
taken, the expression given for
calculating GH should also be
taken. Note that in all cases,
the value of GH computed using
the equations in table 1 is an
approximation to the calibrated
value, GH.

9Calibration, as used here, does not refer
to the normal calibration done by an
instrument to ensure that the accuracy
of the instrument is within the specified
limits, but rather to an extra step taken
to correct for known measurement
errors.
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Summary of
Calibration
Conditions and
Coherence



Coherence, and Maximum
Loop Gain

Table 4 also lists expressions
for calculating the coherence
function that corresponds to the
loop-gain estimate, given the
measured frequency response
and the measured coherence
function. These expressions
need to be evaluated if one
wishes to use the coherence
function as a measure of how
good the measurement is or as
an input to a curve fitter.

Finally, table 5 lists expressions
for the maximum loop-gain
magnitude that can be handled
by each method. There are two
groups of measurements in this
list. Those marked with an
asterisk are good for large loop
gain magnitudes, and the
maximum magnitude is limited
by the ratio of excitation signal
amplitude to analyzer noise
amplitude. The remaining
methods are not good for large
loop gain magnitudes, and are
limited by the mismatch be-
tween the analyzer channels or
summing junction channels.

For the first group of methods,
the maximum loop gain can be
increased by averaging more
spectra. Unfortunately, nothing
much can be done to improve the
performance of the second group
of measurements, other than to
improve the accuracy of the
measurement.
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Possible Loop
Gain Magnitudes



Choosing Methods

No one technique is best in all
cases. In fact, because of the
wide variety of configurations of
control systems, each of these
methods might be the “correct”
choice in some particular situa-
tion. Figure 5 is a decision tree
that can be used to help decide
on the best measurement
method in any given case. One
consideration is whether the
reference signal can be replaced
by the test signal, or will a
summing junction have to be
used? Is an external or an
internal summing junction
available? If not and one has to
be added, which type will be
used?

The type of excitation that will
be used must also be deter-
mined. Note that for each
combination of summing junc-
tion location and signal pair,
there is a broadband and a
swept sine excitation method
that can be used and that have a
similar ranking.

All of these expressions were
derived based upon the assump-
tion that all signals (S, R, N,
N, N,, N,) are incoherent with
one another and that the vari-
ances on N, and N, are small
compared to the variance on S.
There are numerous terms in
the equations that have been
discarded based upon these
assumptions. In cases where
these assumptions are not valid,
the equations should be
rederived.

Summary

A number of methods are
required for measuring the loop
gain of a closed loop control
system, partly due to the num-
ber of different pairs of signals
that might be available and
partly due to the number of
possible conjugate spectra that
can be used to form auto- and
cross-spectrum averages. There
are five pairs of signals that can
be used with a summing junc-
tion external to the control loop,
and there are three pairs that
can be used with an internal
summing junction. For each
pair of signals, there is a method
utilizing a broadband-excitation
source and a method utilizing a
swept-sine source.

Thus, a total of 16 measurement
methods are needed to cover all
possible situations. In addition,
there are two “direct” methods
(3 and 16} that do not require
any subsequent computations
and are included because they
seem to be popular. Unfortu-
nately, they have potential bias
problems and are not recom-
mended for use in certain cases.
This adds up to a total of 18
measurement methods that are
discussed.

Figure 5 shows a decision tree
that helps to select the best
method, depending upon the
location of the summing junction
and upon the signal pairs that
are available. It is usually
better to use an external sum-
ming junction if possible, and
the best approach is to simply
replace the normal reference
signal, R, with the test excita-
tion signal, S. Otherwise, an
internal summing junction can
be used. For large loop gain
magnitudes, it is necessary to
select one of the upper 10

18

methods in the decision tree.
The maximum loop gain magni-
tude is limited for the lower six
methods, due to the unavoidable
mismatch between analyzer
input channels.

The variance on the loop gain
estimate is a function of the loop
gain itself. The ratio of the
standard deviation (square root
of the variance) to the expected
value of the loop gain is called
the noise-to-signal ratio on the
estimate of GH. This noise-to-
signal ratio goes to zero near the
loop instability point (-1,0) in the
GH-plane. This ratic becomes
infinite somewhere near the GH-
plane origin, and it also becomes
infinite as the magnitude of GH
becomes infinite.

The several methods discussed
in this application note serve as
a guide to techniques for model-
ing and analyzing a generic
control system, but are really
not a substitute for a specific
model and for a detailed analysis
of a particular control system
configuration. There are too
many variations in the model
and in the available measure-
ment algorithms to cover every
possibility in one application
note. Each control system
configuration seems to have a
personality of its own and
deserves individual attention.

)
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Appendix A: Excitation
Signals in Control

There are two types of excitation
signals that are commonly used
in control system testing: broad-
band and swept (or stepped)
sine. In the broadband case, a
random signal or a chirp having
a restricted bandwidth is often
used, and the input and output
power spectra for the control
system, along with the cross-
spectrum, are averaged to
reduce the variance on the
measurement. In the swept-sine
case, the analytic source sinu-
soid is used to multiply both
input and output channels and
the results are averaged (or
integrated) for some period of
time to reduce the variance.

In both cases, the averaging
process can be viewed as a
filtering operation that intro-
duces an effective noise-power
bandwidth inversely propor-
tional to the averaging time.

The primary difference in the
measurement algorithm be-
tween these two excitation
approaches is in the choice of the
conjugate spectrum used in
forming the auto and cross
power spectrum. If a signal
spectrum is multiplied by the
conjugate of itself, a bias will be
introduced if there is any noise
or interference in the original

spectrum. This bias can be
eliminated by choosing a conju-
gate spectrum that is heavily
correlated with the excitation
signal, but uncorrelated with
any other components. Thus,
the swept sine methods tend to
be unbiased, while the broad-
band methods may have bias
unless some precautions are
taken. It is important to select
the conjugate spectrum with
care, to minimize this bias.

Either broadband or swept sine
excitation can be used. How-
ever, a swept sine test will
generally be much slower than a
broadband method for the same
frequency span, resolution, and
number of measurement points.
The extra measurement time
has a major benefit: swept sine
results contain little or no
variance. For this reason many
users prefer the swept sine
approach. However, if the
measurement times are adjusted
to be the same (for example, by
increasing the number of aver-
ages in the broadband case) and
if the number of measurement
points is identical, the variance
should be nearly the same.

In an attempt to increase the
speed of the swept sine measure-
ment, the settings for the
“settling time” or the “integra-
tion time” are often reduced.
Reducing these parameters too
far can deteriorate the quality of
the measurement by causing
excessive smearing or leakage.
The sweep speed should be slow
enough that this does not occur.
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When auto-ranging is used, a
swept sine measurement can be
made over a much greater
dynamic range than can a
broadband measurement, since
the effective dynamic range is
the combination of the intrinsic
dynamic range of the amplifier
(and analog-to-digital converter),
and the dynamic range of the
input attenuator. For broadband
excitation, the input attenuators
must be set for the total signal
amplitude, so auto-ranging
during the measurement is not
an option.

Both methods may take extra
time if there is some inefficiency
in implementation. For ex-
ample, time may be lost in
broadband methods during the
computation of the Fourier
transform. For swept sine
methods, time is lost in waiting
for the system under test to
settle after a new frequency is
selected. This lost time can be
quite long if the system under
test contains a conjugate pair of
poles near the jw-axis (i.e.
lightly damped).



Appendix B: A Word on

Summing Junctions

There are many ways to sum an
excitation signal into the control
loop, and each method should be
modeled and analyzed to deter-
mine the errors that might be
introduced into the measure-
ment by the summing junction.
However, the two most common
injection methods use either
operational amplifiers or trans-
formers.

Using Operational
Amplifiers

Figures B-1 and B-2 show two
operational amplifier configura-
tions that are commonly used.
Errors are introduced into the
measurement by a gain mis-
match between the two input
channels, both at dc and as a
function of frequency. In addi-
tion, there may be an overall
gain error versus frequency after
the signals have been summed
together. The parameters
designated G, and K (or K ) are
used in the measurement models
to account for these gain errors.

Care must be taken to properly
account for the polarities of the
input and output signals when
the summing junction is inserted
into the control loop. The
polarity of the existing control
system path must not be acci-
dentally inverted when the
summing junction is installed.
Also, the measurement models
assume a negative polarity on
the excitation signal input, so
this polarity must be correct, or
else the model equations must
be modified accordingly.

Care must also be taken to
ensure that the input and output
impedances of the summing
junction closely match the load
and drive impedances at the
insertion point. If there is a
significant mismatch then the
resulting injection loss will
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cause the loop to operate differ-
ently than it will once the
summing junction is removed.
In general, the best place to
insert an op-amp type summing
junction is at a point where the
input impedance is high and the
drive impedance is low.

Figure B-1

A simple summing
junction using an
operational
amplifier and four
identical resistors.

Figure B-2

An alternate
summing junction
topology using two
operational
amplifiers and five
resistors, with all
terminals operating
at either ground or
virtual ground.




Using a Transformer

In some cases, a transformer is a
more convenient summing
device than an operational
amplifier. This is particularly
true when the summing junction
is located at a high voltage point
in the system, or where operat-
ing currents are large (as in a
switching power supply, for
example). The frequency re-
sponse of a transformer is
generally restricted in band-
width somewhat more than that
of an operational amplifier, and
transformers also tend to pick
up interfering signals from
various stray magnetic fields,
unless adequately shielded.

When a transformer is used as
an internal summing junction,
there will be some degree of
leakage of the input excitation
signal around the transformer
that can cause significant errors
in the measurement. Figure B-3
shows the equivalent circuit of a
summing transformer, and
figure B-4 shows the equivalent
model that is used for the
transformer in the various
measurement methods. The
leakage contribution repre-
sented by K, is proportional to
the product Z (Y +rY,). See
reference [3] for a derivation of
the elements of the model from
the transformer equivalent
circuit,.

To minimize the signal leakage
contribution, select a trans-
former with an electrostatic
(Faraday) shield between the
primary and secondary wind-
ings. Also keep in mind that the
transfer function through a
transformer may depend upon
the amount of de current that
flows through a winding, due to
core saturation. These dc
currents will also cause larger
amounts of nonlinear distortion.

Be sure to select a transformer
with enough magnetizing
inductance to support the lowest
test frequency of interest in the
given impedance environment.

This leakage around the sum-
ming peint is not of great con-
cern when the transformer is
used as an external summing
junction, since the effects of this
leakage can be accommodated by
adjusting the amplitudes of the
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excitation S and the reference R,
and by adjusting the gain/phase
block K.

For critical measurements, it
may be necessary to determine
the characteristics of the trans-
former and to remove the
associated errors from the loop
gain estimate by means of a
calibration procedure. Refer to
table 4 for these calibration
factors.

Transtormer Summing Junction

Figure B-3

The equivalent circuit
of a transformer
summing junction,
showing a leakage path
via the admittance Y,.
There is also an
effective leakage term
due to the produet Z Y,

Summing Junction Model

Figure B-4

. A summing junction
| model of the
transformer shown in
the previous figure, in
which the direct path
is represented by a
frequency response
characteristic K , and
the leakage path is
represented by K, via
a second summing
junction.




Appendix C: Using
Methods 1 and 14

A new technique, used in meth-
ods 1 and 14, of generating the
conjugate spectrum by adding or
subtracting the measured
signals is presented in this note.
Some thought must be given to
the implementation of these
methods since the details of how
to do this may not be immedi-
ately obvious. The equations of
table 1 imply that in both of
these cases the loop gain can be
calculated from the data gener-
ated by the trispectrum-averag-
ing technique. Figure C-1 shows
how to implement method 14,
the Y-Z technique. Recall that
for this measurement, the
excitation signal is being in-
jected into the loop via an
internal summing junction.
Channel 2 of the analyzer is
connected to the input of the
summing junction, Y, and
channel 1 of the analyzer is
connected to the output of the
summing junction, Z.

The final result for methed 1,
B+E, is shown in figure C-2.
The steps leading up to this
result are similar to the steps in
figure C-1.
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Figure C-1
Implementing
method 14 (Y-Z)
using the three
spectra of a
trispectrum
average.

Figure C-2
Implementing
method 1 (B+E).




Glossary

Bias. The difference between the
true mean (average) value of a
random variable and the expected
value of some estimate of that
mean.

Coherence function. The
proportion of the output power
from a system that is apparently
caused by the input, as a function
of frequency.

Conjugate spectrum. The
complex conjugate of a frequency
spectrum used as a common
multiplier to form a numerator
and denominator of a frequency
response function.

Expected value. There is a
precise mathematical definition,
but for most purposes this is the
value of a random variable after
an infinite number of samples are
averaged together.

Instability point. In a control
system, this is the point where the
loop gain magnitude is unity and
the phase is -180 degrees. When
this eombination occurs, the loop
becomes unstable.

Noise-to-signal ratio. In this
note, this is the ratio of the
standard deviation to the expected
value of the estimate of the loop
gain.

Nyquist plot. A plot of the locus
of loop gain for a control system
on the GH or Nyquist plane,
where GH is the complex loop
gain value.

Standard deviation. The
square root of the variance of a
random variable. This is the root-
mean-square (rms) value of the
random quantity.

Variance. There is a precise
mathematical definition, but for
most purposes the variance of a
random quantity is the ac power.

23

References

[11Measuring Nonlinear Distor-
tion Using the HP 3562A Dy-
namic Signal Analyzer.
Hewlett-Packard Product Note
3562A-4.

[2]Control Systems Development
Using Dynamic Signal Analyz-
ers, Hewlett-Packard Application
Note 243-2.

[3]Control System Measurement
Techniques and Coherence
Calculations. Hewlett-Packard
Technical Notes. Publication
Numbers 5959-5760 and 5959-
5761. Printed as a single
document.

(4]The Fundamentals of Signal
Analysis. Hewlett-Packard
Application Note 243.



