
Using Linux to Control LXI
Instruments Through VXI-11
Application Note 1465-28

The move to PC-standard I/O
interfaces is a key element of
Agilent Open, which is a versatile
combination of hardware, I/O, and
software tools that make it easy
to create, enhance and maintain
systems. You can take advantage
of this strategy, especially if you
are using Linux as the operating
system for your test solution,

Table of contents
LXI and LAN-Based Instruments 2
TCP/IP Protocols Used for Instrument
 Control 2
VXI-11 or TCP Sockets:
 Which Should You Use? 2
Agilent IO Libraries and the LAN Server 3
The Basis for VXI-11:
 Remote Procedure Calls 3
RPCGEN Code Generator 4
API Calls for RPC 6
Using Basic VXI-11 Functions 6
Additional VXI-11 Functions 8
Abort Channel 8
SRQs (Service Requests) 9
Summary 12

because support for LAN and USB
interfaces is built into the operating
system. Using Linux to Control
LXI Instruments Through VXI-11
is part of a series of application
notes designed to explain how to
control your test instruments under
Linux. Example code is available
for download at http://www.agilent.
com/fi nd/linux.

2

LXI and LAN-based
instruments
Agilent has been offering instru-
ments with LAN interfaces for many
years. In 2004, with the inception
of the LXI Consortium1, momentum
grew and LAN-based instruments
became increasingly popular and
widely accepted in the test industry.

Some of Ethernet’s advantages are
obvious, like its low cost and suit-
ability for distributed and remote
applications. Other aspects are less
obvious but equally important. These
include exceptional performance
with Gigabit Ethernet and a new
level of fl exibility enabled by multi-
cast (one-to-many), peer-to-peer and
quasi-simultaneous communication.

The move towards Ethernet is great
news for Linux (and other non-
Windows) users because they can
use the operating system’s built-in
standard API to control instruments.
Interfaces like GPIB or MXI (specifi c
to the test industry) or PCI cards
require special driver software for a
given operating system fl avor—which
may not be available.

where an instrument is controlled
through a direct TCP socket connec-
tion in a stream-oriented manner,
similar to writing to and reading
from a disk fi le. You can learn more
about this type of connection in
Agilent Application Note 1465-29,
Using Linux to Control LXI
Instruments Through TCP.

VXI-11 or TCP sockets:
Which should you use?
VXI-11 is used exclusively if you are
accessing GPIB instruments through
a LAN-to-GPIB gateway like the
Agilent E5810A or if you are using
a PC as a gateway. However, many
native LAN instruments support both
TCP VXI-11 and socket communica-
tion. Which is the better option?

Often, it is a matter of preference.
However, VXI-11 is the more complex
(higher-layer) protocol (as shown in
Figure 1). Consequently, direct socket
communication will provide better
performance in many situations,
especially if the actual measurement
time is short and you conduct many
individual transactions.

TCP/IP protocols used for
instrument control
In 2000, the VXIplug&play Alliance2
added support for LAN-based instru-
ments to its VISA specifi cations.
Two popular methods of instrument
control via Ethernet were adopted by
VISA: VXI-113 and direct TCP socket
communication (see Figure 1).

VXI-11 was originally designed to
mimic the capabilities of GPIB,
including those based on hardware
signals, such as service request
(SRQ), serial poll, device trigger and
device clear. It was fi rst used in LAN-
to-GPIB gateways, before native LAN-
based instruments were available.
VXI-11 is based on remote procedure
calls (RPC). A single server like the
LAN-to-GPIB gateway can facilitate
access to a number of logical devices,
such as the GPIB instruments behind
the gateway. Although VXI-11 was
designed for LAN-to-GPIB gateways,
it is often supported in native
LAN-based instruments as well for
compatibility.

The other method of instrument
control is socket communication,

Figure 1. TCP/IP layers and their use for instrument control

ApplicationApplication User application

TCP socket
communicationVXI 11

(based
on RPC)

7

XDRPresentation Exchange of data in a platform
independent format6

ONC/RPCSession Distributed software
(calling remote functions)5

UDP/TCPTransport Data integrity
(sequence checking retransmission…)4

IPNetwork Transfer of data across many
networks3

IEEE 802.3 (Ethernet)Data link Transfer of a data frame within a
single network2

IEEE 802.3z (GB ethernet)Physical Transfer of a bit stream
(voltages, bitrate…)1

3

Agilent IO Libraries and
the LAN server
You can turn a Windows PC into
a LAN-to-GPIB gateway using
Agilent’s IO Libraries Suite. This
software package includes a VXI-11
server which makes the PC’s local
interfaces accessible from the
network (and thereby from your
Linux controller).

For more information about the
Agilent IO Libraries, please visit
http://www.agilent.com/fi nd/iosuite.

The basis for VXI-11:
Remote procedure calls
As we noted earlier, VXI-11 is based
on RPC. With RPC, calling a remote
function—one that is executing on
another machine on the network—
is as easy as calling a local function
running on the same computer. The
operating system hides most, but not
all, of the details involved in commu-
nicating with the remote system
from the user. It offers system calls
like clnt_call(), which behave
very much like a normal function
call—the client waits until the server
has executed the function and
returns the results (synchronous
operation, see Figure 2).

RPC was designed to be independent
of a particular programming language
and computer platform—the RPC
server and client can run on
different operating systems and
processors. Interoperability is
achieved through XDR (the data
representation layer, see Figure 1),
which defi nes standard data types,
as well as the byte ordering to be
used in RPC calls. Consequently, the
parameters you are passing to the
RPC function need to be translated
to XDR format and back to native
programming language format for
return data.

How do you know which functions
an RPC server offers and which
parameters they accept? The server
typically comes with a description of
its interfaces in the form of an RPCL
(RPC language) defi nition fi le. RPCL
is very similar to type defi nitions
in C. For example, the RPCL fi le for
VXI-11 includes defi nitions like those
shown in Figure 3.

How does a client identify the
function it wants to call on a given

server? It does so by three distinct
numbers: the program, version and
procedure number. These numbers
are included in the server’s RPCL
defi nitions. For example, in Figure
3, 0x0607AF is the program number,
1 is the version number and 10
is the procedure number of the
create_link() function. The
server machine itself is identifi ed on
the network through its IP address or
hostname.

RPC client RPC server

Application
runs…

cInt–call()

Conversion of
parameters
to XDR format

Conversion of
return data
from XDR to
local format RCP server

returns results

RPC/TCP

RPC/TCP

Remote
function
executes…

RCP server receives
message and “dispatches”
call to desired function

Application
continues to
execute…

Figure 2. Synchronous execution of an RPC function through clnt_call()

Figure 3. RPCL defi nition of some key VXI-11 functions

program DEVICE_CORE {
 version DEVICE_CORE_VERSION {
 Create_LinkResp create_link (Create_LinkParms) = 10;
 Device_WriteResp device_write (Device_WriteParms) = 11;
 Device_ReadResp device_read (Device_ReadParms) = 12;
 Device_Error destroy_link (Device_Link) = 23;
 } = 1;
} = 0x0607AF;

4

RPCGEN code generator
Using the basic clnt_call()
operating system call to run
RPC functions is a little tedious.
Fortunately, the rpcgen tool makes
the process easier (see Figure 4).
rpcgen turns the server’s RPCL
defi nitions into real C declarations.
In addition, it generates translator
functions (which translate native
RPC parameters to XDR), as well
as wrapper functions that allow
us to call RPC functions using real
function names instead of the generic
clnt_call().

Figure 5 uses the VXI-11 function
device_write() as an example
and shows how rpcgen works.
The original RPCL defi nition of
device_write() is shown in
Figure 5a. This function is used to
send SCPI commands to an instru-
ment (described below in more
detail).

One of the fi les generated by rpcgen
is a C header (.h) fi le. It contains
ready-to-use C declarations of
the numbers and data types in
the RPCL description. Figure 5b
shows the defi nitions generated for
device_write(), as well as the
constant defi nitions for the program
and version number. Note how the
generic RPCL “opaque” data type has
now been replaced by an equivalent
C structure (buffer). Using these C
declarations, creating the appro-
priate structures for the function
parameters becomes relatively
straightforward. There is no need
to worry about XDR.

How do you call the RPC function?
The easiest way is to use the wrapper
functions generated by rpcgen.
Figure 5c shows the corresponding
function for device_write() in
the client implementation (_clnt.c)
fi le. It accepts a pointer to a struc-
ture that holds the function’s input
parameters, as well as a reference
to the RPC link. It returns a pointer
to a result data structure for access
by the calling application. Also, note
how the wrapper function passes
the addresses of the “xdr” translator
functions defi ned in the xdr.c fi le to
clnt_call().

Figure 4. Files generated by RPCGEN

*.x file

*.h file *_xdr.c file *_svc.c file *_cInt.c file

Description of server’s
RPC functions
in RPCL format

C/C++ version of
type definitions

in RPCL file

Translator functions
(convert native C

parameters to XDR—
and back for return

parameters)

Code generated
for server

implementation

Stub (wrapper)
functions for client

rpcgen

5

Figure 5a. RPCL defi nition of the device_write() VXI-11 function

struct Device_WriteParms {
 Device_Link lid; /* link id from create_link */
 unsigned long io_timeout; /* time to wait for I/O */
 unsigned long lock_timeout; /* time to wait for lock */
 Device_Flags flags;
 opaque data<>; /* the data length and the data itself */
};
struct Device_WriteResp {
 Device_ErrorCode error;
 unsigned long size; /* Number of bytes written */
};
Device_WriteResp device_write (Device_WriteParms) = 11;

Figure 5b. C declarations in the header fi le generated by rpcgen

struct Device_WriteParms {
 Device_Link lid;
 u_long io_timeout;
 u_long lock_timeout;
 Device_Flags flags;
 struct {
 u_int data_len;
 char *data_val;
 } data;
};
typedef struct Device_WriteParms Device_WriteParms;
struct Device_WriteResp {
 Device_ErrorCode error;
 u_long size;
};
typedef struct Device_WriteResp Device_WriteResp;

#define DEVICE_CORE 0x0607AF
#define DEVICE_CORE_VERSION 1
#define device_write 11

Figure 5c. Wrapper function for device_write(), generated by rpcgen

Device_WriteResp *device_write_1(Device_WriteParms *argp, CLIENT *clnt)
{
 static Device_WriteResp clnt_res;
 memset((char *)&clnt_res, 0, sizeof(clnt_res));
 if (clnt_call (clnt, device_write,
 (xdrproc_t) xdr_Device_WriteParms, (caddr_t) argp,
 (xdrproc_t) xdr_Device_WriteResp, (caddr_t) &clnt_res,
 TIMEOUT) != RPC_SUCCESS) {
 return (NULL);
 }
 return (&clnt_res);
}

6

API calls for RPC
Table 1 lists a number of basic API
calls for RPC. There are many more
functions and fl avors (see rpc(5) man
page for more information), but these
are suffi cient for most applications.

Using basic VXI-11
functions
After creating the link to the RPC
server using clnt_create(), you
can call VXI-11 functions either
through the rpcgen wrappers or
through direct calls to clnt_call().
Table 2 summarizes basic VXI-11
functions.

Figure 6 shows a basic example.
It reads the instrument’s ID string
through the *IDN? query. First, the
header and C fi les generated by
rpcgen are included.

Next, the RPC link to the instrument’s
VXI-11 server is created through a
call to clnt_create(). Note that
you can specify which transport
protocol you would like to use (TCP
or UDP). clnt_create() returns
a pointer which is used to reference
the RPC link in subsequent calls.

From here on, the wrapper func-
tions generated by rpcgen are used
to call individual VXI-11 functions.
create_link_1() establishes a
VXI-11 link to a given logical device
in the VXI-11 server. The return data
structure includes a link ID number
(lid) that is stored in a local variable—
it is needed for subsequent VXI-11
calls to this same logical device. Note
that “inst0” is the logical device name
used by most native LAN instruments.
When using a LAN-to-GPIB gateway,
the logical device name refers to a
particular GPIB address behind the
server, for example “gpib0,9”.

Next, device_write_1() is used
to send the *IDN? command to
the instrument. Note that SCPI
commands are terminated with a
newline (‘\n’) character.

The instrument’s response is read
using the VXI-11 device_read_1()
function. Note the termChar param-
eter: It defi nes which character
indicates the end of the instrument’s
response. The response string is
copied to a local buffer and a zero
character is appended in order to
turn the buffer into a standard C
string, which is required to be able to
use standard C string functions such
as printf().

Finally, destroy_link_1() releases
the link to the logical device. This
allows the VXI-11 server to free any
resources allocated for the connec-
tion. Similarly, clnt_destroy()
releases the basic RPC connection.

Table 1. Basic operating system calls for access to an RPC server

API function Description
clnt_create() Creates an RPC client for access to a particular host and

RPC program on that host. This is always the fi rst step
(required both for direct use of clnt_call() and when using
the wrapper functions generated by rpcgen)

See clnt_create(3) man page for details
clnt_call() Calls a remote function offered by the RPC server. This

function is used by the wrappers generated by rpcgen

See clnt_call(3) man page for details.
clnt_destroy() Destroys the RPC client and releases any resources

allocated for the link

See clnt_destroy(3) man page for details

Table 2. Basic VXI-11 functions

API function Description
create_link Establishes a link to a logical device in the VXI-11 server
device_write Sends a message (typically, a SCPI command) to the

instrument
device_read Reads data (e.g. measurement results) from the instrument
destroy_link Releases the link established by create_link and frees any

resources allocated

7

Figure 6. Using VXI-11 to retrieve an instrument’s ID string

#include “vxi11.h”
#include “vxi11_xdr.c”
#include “vxi11_clnt.c”

CLIENT *VXI11Client;

if((VXI11Client=clnt_create(“169.254.9.80”,
 DEVICE_CORE,DEVICE_CORE_VERSION,”tcp”))==NULL) {
 /* Do error handling here */
}

Create_LinkParms MyCreate_LinkParms;
MyCreate_LinkParms.clientId = 0; // Not used
MyCreate_LinkParms.lockDevice = 0; // No exclusive access
MyCreate_LinkParms.lock_timeout = 0;
MyCreate_LinkParms.device = “inst0”; // Logical device name
Create_LinkResp *MyCreate_LinkResp;
if((MyCreate_LinkResp=create_link_1(&MyCreate_LinkParms,VXI11Client))==NULL) {
 /* Do error handling here */
}
Device_Link MyLink;
MyLink = MyCreate_LinkResp->lid; // Save link ID for further use
Device_WriteParms MyDevice_WriteParms;
MyDevice_WriteParms.lid = MyLink;
MyDevice_WriteParms.io_timeout = 10000; // in ms
MyDevice_WriteParms.lock_timeout = 10000; // in ms
MyDevice_WriteParms.flags = 0;
MyDevice_WriteParms.data.data_val = “*IDN?\n”;
MyDevice_WriteParms.data.data_len = 6;
Device_WriteResp *MyDevice_WriteResp;
if((MyDevice_WriteResp=device_write_1(&MyDevice_WriteParms,VXI11Client))
 ==NULL) {
 /* Do error handling here */
}

Device_ReadParms MyDevice_ReadParms;
MyDevice_ReadParms.lid = MyLink;
MyDevice_ReadParms.requestSize = 200;
MyDevice_ReadParms.io_timeout = 10000;
MyDevice_ReadParms.lock_timeout = 10000;
MyDevice_ReadParms.flags = 0;
MyDevice_ReadParms.termChar = ‘\n’;
Device_ReadResp *MyDevice_ReadResp;
if((MyDevice_ReadResp=device_read_1(&MyDevice_ReadParms,VXI11Client))==NULL) {
 /* Do error handling here */
}
char DataRead[200];
strncpy(DataRead,MyDevice_ReadResp->data.data_val,
 MyDevice_ReadResp->data.data_len);
DataRead[MyDevice_ReadResp->data.data_len]=0;
printf(“Instrument ID string: %s\n”,DataRead);

if(destroy_link_1(&MyLink,VXI11Client)==NULL)
{
 /* Do error handling here */
}

clnt_destroy(VXI11Client);

8

Additional VXI-11
functions
VXI-11 features a number of addi-
tional functions that are straightfor-
ward to use. They are listed in Table 3.

Note: Not all of these operations
might be supported by a given
logical device behind a VXI-11 server
(depending on the physical interface

between the VXI-11 server and the
device). If the server recognizes that
a requested operation is not available
for a particular device (which may
occur), the call will return error
code 8, “operation not supported.”

Calling the above functions is straight-
forward. The example in Figure 7
triggers an instrument through a
call to device_trigger_1().

Table 3. Additional VXI-11 functions using the core channel

VXI-11 function Description
device_readstb() Reads the device’s status byte. This corresponds to the

IEEE488 serial poll operation.
device_trigger() Triggers the device.
device_clear() Clears (resets) the device.
device_remote() Sets the device to remote mode (front panel controls are

disabled).
device_local() Sets the device to local mode (front panel controls are

enabled).
device_lock() Attempts to lock (get exclusive access to) the device.
device_unlock() Releases the lock for the device.
device_docmd() Executes a device-specifi c command.

Figure 7. Triggering a device through device_trigger

void vxi-11_trigger()
{
 Device_GenericParms MyDevice_GenericParms;
 MyDevice_GenericParms.lid = MyLink;
 MyDevice_GenericParms.flags = 0;
 MyDevice_GenericParms.lock_timeout = 10000;
 MyDevice_GenericParms.io_timeout = 10000;
 if(device_trigger_1(&MyDevice_GenericParms,VXI11Client)==NULL) {
 /* Do error handling here */
 }
}

9

Abort channel
Some VXI-11 operations, for example,
device_abort, use a separate RPC
link, in this case the abort channel.
Using a separate channel makes it
easier for the instrument to execute
this call with due priority (depending
on the architecture of the instrument,
incoming RPC calls might be
serialized).

Figure 8 shows the RPCL defi nition
of the abort channel.

Use of the abort channel follows
mostly the same rules and mechanics
as the core channel described above.
However, there are some differences
in the way the RPC link is set up.
When setting up the core channel,
the port mapper service in the
instrument is used to establish the
link through the appropriate TCP
port number. Consequently, there is
no need to specify the port number
when establishing a connection
through a call to clnt_create().

The abort channel server, in contrast,
does not register itself with the
port mapper service. In this case,
the TCP port number used by
the RPC server in the instrument
needs to be specifi ed explicitly. The
clnttcp_create() system call
does just that—it accepts a pointer
to a structure of type sockaddr_in
which holds both the IP address and
the port number of the destination
server. How do we know which port
number is being used in the instru-
ment for the abort channel? This
information is part of the parameters
returned when establishing the
core channel link through a call to
clnt_create().

As shown in Figure 8, the abort
channel RPC server is used for a
single RPC function, device_abort,
only. This function instructs the
instrument to abort any RPC opera-
tions pending on the core channel.
Due to the synchronous nature of
most instrument programming, it is
seldom used.

SRQs (Service Requests)
VXI-11 includes provisions for
service requests. Instruments
use an SRQ to signal the system
controller when they need attention
(for example, when an error occurs
or when measurement results are
available in the instrument’s output
buffer).

SRQs use a separate RPC link, the
interrupt channel. Due to the nature
of SRQs (they originate in the instru-
ment, not the controller), the roles
of server and client are reversed: the
instrument signals SRQs by calling an
RPC function, device_intr_srq(),
to be executed on the controller.

Figure 9 shows the RPCL description
of the interrupt channel.

Figure 9. RPCL description of the interrupt channel

struct Device_SrqParms {
 opaque handle<>;
};
program DEVICE_INTR {
 version DEVICE_INTR_VERSION {
 void device_intr_srq (Device_SrqParms) = 30;
 }=1;
}= 0x0607B1;

Figure 8. RPCL description of the abort channel

program DEVICE_ASYNC{
 version DEVICE_ASYNC_VERSION {
 Device_Error device_abort (Device_Link) = 1;
 } = 1;
} = 0x0607B0;

10

On the PC that controls the instru-
ment, you need to set up an RPC
server that makes this function
available. How do you create the RPC
server program? Again, rpcgen will
do most of the work for you. It gener-
ates the initialization and dispatch

routine required (see the _svc.c fi le).
All you need to do is implement
the actual device_intr_srq()
function, which is called by the RPC
dispatcher. Figure 10 shows a key
fragment of the code generated by
rpcgen.

Note that in the main function, the
RPC server is registered for both
TCP and UDP transport protocols.
Support for UDP is optional in this
case, but it won’t hurt to register the
dispatch routine for both protocols.

Figure 10. Interrupt channel server code generated by rpcgen

static void
device_intr_1(struct svc_req *rqstp, register SVCXPRT *transp)
{
 union {
 Device_SrqParms device_intr_srq_1_arg;
 } argument;
 char *result;
 xdrproc_t _xdr_argument, _xdr_result;
 char *(*local)(char *, struct svc_req *);
 switch (rqstp->rq_proc) {
 case NULLPROC:
 (void) svc_sendreply (transp, (xdrproc_t) xdr_void, (char *)NULL);
 return;
 case device_intr_srq:
 _xdr_argument = (xdrproc_t) xdr_Device_SrqParms;
 _xdr_result = (xdrproc_t) xdr_void;
 local = (char *(*)(char *, struct svc_req *))
 device_intr_srq_1_svc;
 break;
 default:
 svcerr_noproc (transp);
 return;
 }
 memset ((char *)&argument, 0, sizeof (argument));
 if (!svc_getargs (transp, (xdrproc_t) _xdr_argument,
 (caddr_t) &argument)) {
 svcerr_decode (transp);
 return;
 }
 result = (*local)((char *)&argument, rqstp);
 if (result != NULL && !svc_sendreply(transp,
 (xdrproc_t) _xdr_result, result)) {
 svcerr_systemerr (transp);
 }
 if (!svc_freeargs (transp, (xdrproc_t) _xdr_argument,
 (caddr_t) &argument)) {
 fprintf (stderr, “%s”, “unable to free arguments”);
 exit (1);
 }
 return;
}

11

Figure 10, continued.

int
main (int argc, char **argv)
{
 register SVCXPRT *transp;
 pmap_unset (DEVICE_INTR, DEVICE_INTR_VERSION);
 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL) {
 fprintf (stderr, “%s”, “cannot create udp service.”);
 exit(1);
 }
 printf(“UDP Socket for VXI-11 interrupt channel: %d\n”,transp->xp_port);
 if (!svc_register(transp, DEVICE_INTR, DEVICE_INTR_VERSION,
 device_intr_1, IPPROTO_UDP)) {
 fprintf (stderr, “%s”,
 “unable to register (DEVICE_INTR, DEVICE_INTR_VERSION, udp).”);
 exit(1);
 }

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL) {
 fprintf (stderr, “%s”, “cannot create tcp service.”);
 exit(1);
 }
 printf(“TCP Socket for VXI-11 interrupt channel: %d\n”,transp->xp_port);
 if(!svc_register(transp, DEVICE_INTR, DEVICE_INTR_VERSION,
 device_intr_1, IPPROTO_TCP)) {
 fprintf (stderr, “%s”,
 “unable to register (DEVICE_INTR, DEVICE_INTR_VERSION, tcp).”);
 exit(1);
 }
 svc_run ();
 fprintf (stderr, “%s”, “svc_run returned”);
 exit (1);
 /* NOTREACHED */
}

12

The printf() statements were
added to the code generated by
rpcgen. They demonstrate how to
get the port numbers allocated to
the RPC server. You will need this
information below.

svc_run() starts the RPC server.
This call will not return, normally.
Therefore, it is typically run as a
separate process or thread.

The dispatch routine, device_
intr_1(), dispatches incoming
RPC calls to the local function

implementations. In this case, there
is only a single function to imple-
ment, device_intr_srq_1_svc().
A very basic example is shown in
Figure 11. Typically, signals or other
means of inter-process communica-
tion would be used to pass the event
on to the main application program.

Once the RPC server has been put in
place, SRQs can be activated in the
instrument using the VXI-11 calls
that are part of the regular core
channel. See Table 4.

Summary
The VXI-11 protocol is used by
LAN-to-GPIB gateways and by
many native LAN-based instru-
ments. Because it is based on RPC,
a standard TCP/IP protocol, VXI-11
is supported by all fl avors and
versions of Linux. Although RPC is
more complex than a simple TCP
link, programming is still relatively
straightforward with the help of
rpcgen.

Table 4: VXI-11 functions for SRQs

VXI-11 function Description
create_intr_chan() Tells the instrument about the RPC server available for SRQs.

Requests the instrument to establish an interrupt channel

Parameters include the IP address and the port number of
the RPC server put in place by the controller.

device_enable_srq() Enables or disables the use of the interrupt channel.
destroy_intr_chan() Requests the instrument to release the interrupt channel.

Figure 11. A trivial implementation of a device_intr_srq service routine

#include “vxi11intr_xdr.c”
void * device_intr_srq_1_svc(Device_SrqParms *MyDevice_SrqParms, struct
svc_req *Mysvc_req)
{
 printf(“SRQ received...\n”);
 return(NULL);
}

1 For details about LXI (LAN Extensions for
Instrumentation) and the LXI Consortium, see
http://www.lxistandard.org

2 For details about VISA and the VXIplug&play
Alliance, see http://www.vxipnp.org

3 For details about VXI-11, see
http://www.vxibus.org/freepdfdownloads/vxi-11.pdf

13

Related Agilent literature
The 1465 series of application notes provides a
wealth of information about the creation of test
systems, the successful use of LAN, WLAN and
USB in those systems, and the optimization and
enhancement of RF/microwave test systems.
All of the individual notes listed below are also
available in a compilation:

• Test-System Development Guide:
A Comprehensive Handbook for Test Engineers

 (pub no. 5989-5367EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-5367EN.pdf

Test System Development
• Test System Development Guide:

Application Notes 1465-1 through 1465-8
 (pub no. 5989-2178EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2178EN.pdf

• Using LAN in Test Systems: The Basics
 AN 1465-9 (pub no. 5989-1412EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems:
Network Configuration

 AN 1465-10 (pub no. 5989-1413EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems: PC Configuration
 AN 1465-11 (pub no. 5989-1415EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and
Measurement Environment

 AN 1465-12 (pub no. 5989-1417EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1417EN.pdf

• Using SCPI and Direct I/O vs. Drivers
 AN 1465-13 (pub no. 5989-1414EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1414EN.pdf

• Using LAN in Test Systems: Applications
 AN 1465-14 (pub no. 5989-1416EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1416EN.pdf

• Using LAN in Test Systems:
Setting Up System I/O

 AN 1465-15 (pub no. 5989-2409)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2409EN.pdf

• Next-Generation Test Systems:
Advancing the Vision with LXI

 AN 1465-16 (pub no. 5989-2802)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems
• Optimizing the Elements of an RF/Microwave

Test System
 AN 1465-17 (pub no. 5989-3321)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3321EN.pdf

• 6 Hints for Enhancing Measurement Integrity
in RF/Microwave Test Systems

 AN 1465-18 (pub no. 5989-3322)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3322EN.pdf

• Calibrating Signal Paths in RF/Microwave
Test Systems

 AN 1465-19 (pub no. 5989-3323)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3323EN.pdf

LAN eXtensions for Instrumentation (LXI)
• LXI: Going Beyond GPIB, PXI and VXI
 AN 1465-20 (pub no. 5989-4371)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4371EN.pdf

• 10 Good Reasons to Switch to LXI
 AN 1465-21 (pub no. 5989-4372)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4372EN.pdf

• Transitioning from GPIB to LXI
 AN 1465-22 (pub no. 5989-4373)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4373EN.pdf

• Creating hybrid systems with PXI, VXI and LXI
 AN 1465-23 (pub no. 5989-4374)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4374EN.pdf

• Using Synthetic Instruments in Your Test System
 AN 1465-24 (pub no. 5989-4375)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4375EN.pdf

• Migrating System Software from GPIB to
LAN/LXI

 AN 1465-25 (pub no. 5989-4376)
 http://cp.literature.agilent.com/litweb/

pdf/5989-4376EN.pdf

• Modifying a GPIB System to Include LAN/LXI
 AN 1465-26 (pub no. 5989-6824)
 http://cp.literature.agilent.com/litweb/

pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/find/linux.

• Using Linux in Your Test Systems: Linux Basics
 AN 1465-27 (pub no. 5989-6715)
 http://cp.literature.agilent.com/litweb/

pdf/5989-6715EN.pdf

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confi dence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/fi nd/removealldoubt

Agilent Email Updates

www.agilent.com/fi nd/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/fi nd/agilentdirect
Quickly choose and use your test
equipment solutions with confi dence.

Agilent
Open

www.agilent.com/fi nd/open
Agilent Open simplifies the process of
connecting and programming test systems
to help engineers design, validate and
manufacture electronic products. Agilent
offers open connectivity for a broad range
of system-ready instruments, open industry
software, PC-standard I/O and global
support, which are combined to more
easily integrate test system development.

www.lxistandard.org
LXI is the LAN-based successor to GPIB,
providing faster, more effi cient connec-
tivity. Agilent is a founding member of the
LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
offi ce. The complete list is available at:
www.agilent.com/fi nd/contactus

Americas
Canada 877 894 4414
Latin America 305 269 7500
United States 800 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700
Germany 01805 24 6333*
 *0.14€/minute
Ireland 1890 924 204
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/fi nd/contactus
Revised: May 7, 2007

Product specifi cations and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, June 8, 2007
5989-6716EN

