
Test-System
Development Guide
A Comprehensive Handbook
for Test Engineers

Open the door to
simpler system creation

� � Test System Development Guide

�

Introduction   6
Section 1. Test System Design   6
Section 2. Networking Choices   6
Section 3. LXI: The Future of Test   6
Section 4. RF/Microwave Test

Systems   6

Section 1.
Test System Design  7
Overview  7

1. Introduction to Test-System
Design  9
Introduction  9
Transforming test into a strategic

advantage  9
Test-system considerations  10
Planning your test system  10
Control decisions  12
Planning for the future  16
Conclusion  16

2. Computer I/O
Considerations  19
Introduction  19
Proprietary I/O versus industry-standard

I/O  19
GPIB interfaces  20
USB interfaces   20
LAN interfaces  21
Which I/O interface should you use?   23
Conclusion  26

3. Understanding Drivers and
Direct I/O  27
Introduction  27
History  27
Choosing and using instrument drivers  31
Conclusion  34

4. Choosing Your Test-System
Software Architecture  35
Introduction  35
Gathering and documenting software

requirements  36
Programming and controlling your

instruments  38
Collecting and storing the test data  38
Designing the user interface  40
Choosing the development

environment  42
Working with open standards  44
Developing a test sequence  46
Planning for software reuse  47
Conclusion  50

5. Choosing Your Test-System
Hardware Architecture and
Instrumentation  51
Introduction  51
System architecture  51
Choosing instruments for your test

system   59
Example test system  61
Conclusion  64

6. Understanding the Effects
of Racking and System
Interconnections  65
Introduction  65
Choosing racks and accessories  65
Instrument layout  66
AC power distribution  73
Conclusion  74

7. Maximizing System
Throughput and Optimizing
System Deployment  75
Introduction  75
Upfront design decisions affect

throughput  76
Fine-tuning your system for speed  84
Conclusion  86

8. Operational
Maintenance  87
Introduction  87
Worldwide considerations  87
Calibration  89
Diagnostics and Repair  90
Cleaning  91
Upgrades and expansion  92
Conclusion  92

Contents

� Contents

Section 2.
Networking Choices  93
Overview  93

9. Using LAN in Test Systems:
The Basics  95
Introduction  95
Coping with complexity  95
Setting the standard  96
Using LAN in test systems  98
Conclusion  100

10. Using LAN in Test Systems:
Network Configuration and
Basic Security  101
Introduction  101
Creating a safe haven  101
Understanding the pitfalls  101
Designing the private, protected LAN  102
Conclusion  105

11. Using LAN in Test Systems:
PC Configuration  107
Introduction  107
Creating the right environment  107
Exploring network settings in Windows XP

and Vista  107
Using multiple network connections  108
Managing IP addresses  108
Configuring LAN with Agilent IO Libraries

Suite   109
Conclusion  110

12. Using USB in the
Test and Measurement
Environment  111
Introduction  111
USB in the PC universe  111
Agilent support for USB instrument

connectivity  112
Setting up USB instruments with the

Agilent IO Libraries  113
Conclusion  116

13. Using SCPI and Direct I/O
vs. Drivers  117
Introduction  117
Deciding how to communicate  117
Sketching the big picture  117
Achieving communication  118
Exploring the application alternatives  120
Maximizing performance and

flexibility  121
Assessing I/O software alternatives  123
Conclusion  124

14. Using LAN in Test Systems:
Applications  125
Introduction  125
Scenario 1: Sharing instruments  125
Scenario 2: Remote monitoring and data

acquisition  127
Scenario 3: Functional test systems   130
Configuring a VPN  131
Comparing network performance  133
Conclusion  134

15. Using LAN in Test Systems:
Setting Up System I/O  135
Introduction  135
Simplifying LAN-based instrument

connections  135
Assessing the Agilent IO Libraries

Suite  135
Connecting instruments to LAN  137
Conclusion  140

Section 3.
LXI: The Future of Test 141
Overview  141

16. Value, Performance and
Flexibility: The Promise of
LXI  143
Introduction  143
Why test managers are asking for a new

approach  143
Addressing the challenges with LXI  144
The advantages of LXI  146
A closer look at LXI  150
Exploring new possibilities with LXI  153
Appendix 16A: Defining synthetic

instruments  155
Appendix 16B: Creating cost-effective

measurement solutions with Agilent
Open to test your way  156

17. Transitioning from GPIB
to LXI  157
Introduction  157
Comparing system architectures  157
Setting up an LXI system  159
Simplifying software changes  160
Conclusion  161

18. Creating Hybrid Test
Systems with PXI, VXI and
LXI  163
Introduction  163
Assessing modular systems  163
Exploring LAN-based hybrid systems  165
Going beyond hybrid to all-LXI  167
Conclusion  168

19. Assessing Synthetic
Instruments  169
Introduction  169
Reviewing the roots of SI  169
Putting SIs in perspective  170
Comparing present and future

approaches  170
Exploring the initial applications  173
Utilizing current SI devices  174
Conclusion  176

�
www.agilent.com/find/open

Section 4.
RF/Microwave Test
Systems  177
Overview  177

20. Optimizing the Elements
of an RF/Microwave Test
System  179
Introduction  179
Letting the DUT define “future”  179
Reviewing some essential

considerations  180
Translating requirements into optimized

equipment choices  181
Pulling it all together  184

21. Six Hints for Enhancing
Measurement Integrity in RF/
Microwave Test Systems  185
Introduction  185
Hint 1: Prioritize performance, speed and

repeatability  185
Hint 2: Review the nature and behavior of

the DUT  187
Hint 3: Understand, characterize and

correct RF signal paths  188
Hint 4: Be aware of everything connected

to an instrument  189
Hint 5: Examine the operational attributes

of switches  191
Hint 6: Accelerate measurement set up and

execution  192
Conclusion  192

22. Calibrating Signal Paths
in RF/Microwave Test
Systems  193
Introduction  193
Understanding vector and scalar

calibration  193
Performing vector calibration of network-

analyzer paths  195
Performing vector calibration of non-

network-analyzer paths  196
Performing scalar calibration of non-

network-analyzer paths  197
Conclusion  198

Glossary of Test-System
Development Terms  199

Introduction

The Agilent Test-System
Development Guide is a compre-
hensive handbook for test engineers
who need to maximize performance
and flexibility while minimizing cost
and complexity. Throughout, you’ll
find practical advice and real-world
examples that illustrate the deci-
sions involved in overall system
architecture, networking solutions,
and instrumentation hardware and
software.

The Guide is divided into four
sections, beginning with the basics
of test system design, following by
networking decisions, the new LXI
instrumentation standard, and
special considerations for RF/
microwave tests:

Section 1.
Test System Design
Starting with the fundamental
philosophies of test system design,
the eight chapters in this section
cover I/O considerations, decisions
regarding software and hardware
architectures, racking and system
interconnects, data throughout opti-
mization, test planning, and various
deployment issues.

Section 2.
Networking Choices
These seven chapters explore the
networking choices available for
today’s test systems. Local area
networking (LAN) is covered in
detail, including both network and
PC configuration. The Universal
Serial Bus (USB) is also covered
as a networking option, as well as
decisions regarding drivers and I/O
software.

Section 3.
LXI: The Future of Test
This section offers an in-depth
analysis of LXI, a new measurement
platform that combines the advan-
tages of PC-based connectivity with
the flexibility of card-based instru-
mentation—without the disadvan-
tages of a conventional cardcage. LXI
offers greater flexibility by incorpo-
rating a variety of current and future
instrument form factors, lower costs
and smaller footprint by eliminating
the cardcage, and increased security
through the use of a private LAN.
This section explains why LXI can
meet future test needs more effec-
tively than current approaches and
how to make the transition from
GPIB-based systems.

Section 4.
RF/Microwave Test
Systems
RF/microwave test systems present a
number of unique challenges, partic-
ularly in the face of increasingly
complex devices and test require-
ments. This section offers advice on
configuring test systems that balance
the need for performance, speed, and
repeatability.

Please visit www.agilent.com/find/open
for the latest information on the
products discussed in this handbook.

All trademarks mentioned in this
handbook are the property of their
respective owners.

� Introduction

�

Section 1. Test System Design

Overview
The eight chapters in this section
offer a comprehensive introduction
to designing and deploying an
automated test system:

1.	 Introduction to Test System Design,
covers test-system philosophy
and planning and discusses how
test is used in three sectors:
R&D, design validation and
manufacturing.

2.	 Computer I/O Considerations,
describes the advantages of using
computer-industry standard I/O
and explores the advantages and
disadvantages of GPIB, USB and
LAN interfaces for rack-and-stack
test systems.

3.	 Understanding Drivers and Direct
I/O, answers common questions
about the use of drivers and
direct I/O to send commands
from a PC application to the test
instrument.

4.	 Choosing Your Test-System Software
Architecture, helps you choose
the direction for your software
based on the application you
have in mind and the amount of
experience you have. It explores
the entire software development
process, from gathering and
documenting software require-
ments through design reuse
considerations.

5.	 Choosing Your Test-System Hardware
Architecture and Instrumentation,
explores the hardware architec-
ture decisions you must make
before you begin building your
system to ensure that it provides
you with the performance and
flexibility you need. It also
discusses issues you should
consider as you select instru-
ments for your system.

6.	 Understanding the Effects of Racking
and System Interconnections,
discusses the important consid-
erations for arranging your test
equipment in a rack, including
weight distribution, heat dissipa-
tion, instrument accessibility and
ease of use. It also explores ways
to minimize magnetic interfer-
ence and conducted and radiated
noise to maximize measurement
accuracy.

7.	 Maximizing System Throughput
and Optimizing System Deployment,
discusses hardware and software
design decisions that affect
throughput, including instrument
and switch selection, as well as
test-plan optimization and I/O
and data transfer issues. It also
presents ways to optimize your
system as you prepare to
deploy it.

8.	 perational Maintenance, addresses
key issues to consider once
your system is operational,
including worldwide deployment,
calibration, diagnostics and
repair, cleaning, upgrades and
expansion.

� Section 1. Test System Design

�

Introduction
This chapter offers an overview
of the process of designing test
systems, beginning with a discussion
of how carefully designed systems
can transform test into a strategic
competitive advantage. The chapter
then walks you through the key
factors to consider when designing
a test system, choosing the level of
automated control, and planning
for future needs. It concludes with
a comparative case study of testing
power supplies using manual, semi-
automated and automated control.

Transforming test into a
strategic advantage
Functional test is fundamental to
the electronics world. In the past,
test has been treated as a necessary
expense, but enlightened companies
have realized that test can be a signif-
icant asset. A test system can be used
for far more than simply verifying the
limits of the device under test (DUT).
Consider these possibilities:

•	find the weaknesses of the device—
before your customers do

•	predict failures or out-of-spec
trends in production

•	search for the boundaries of the
design—to stretch specifications
or search for something you didn’t
know the product could do

•	verify the long-term characteristics
of the product

•	optimize a production process

•	test for environmental limits

•	find the weaknesses in a
competitor’s product

Test can be used simply as a gating
factor for “good” or “bad” devices, or
it can be used to gain a competitive
advantage. This chapter offers an
overall view of how tests are made,
techniques to optimize tests, and a
number of methods you can use to
your advantage. It covers the three
primary sectors of the product life
cycle that require test: R&D, design
validation, and manufacturing.
Other chapters cover such topics
as hardware architecture, choosing
instruments, software architecture,
computer I/O and connectivity,
assembling a test system, maximizing
throughput, and optimizing deploy-
ment and maintenance.

A systematic test-system design
process as outlined in this guide
will assist you to quickly design a
test system that produces reliable
and repeatable results, meets your
throughput requirements, and does
so within your budget. For further
information regarding test-system
design, you can refer to the book
from which much of the informa-
tion in this chapter was derived:
Test-System Design, A Systematic
Approach by Tursky, Gordon, and
Cowie (Prentice Hall, 2001).

The earlier a product weakness is
discovered, the less expensive the
consequences. That’s one reason
why the role of test changes with
the stage of the product life cycle.
When a product is first developed,
the role of test is to verify that the
design concept is viable. This calls
for quick measurements, usually with
hands-on use of discrete test instru-
ments. Sometimes there is a need to
load measurement data into an Excel
spreadsheet for use in a lab report or
for further analysis.

Excel is the most common software
analysis tool for the R&D engineer.
The connection is usually simple:
a PC connected via GPIB or USB
to an instrument or a small set of
instruments. Simple software, such
as Agilent IntuiLink, finishes the
connection.

Once the design becomes more solid,
there is a need to find its limits and
weaknesses. That’s where the design
validation system comes in. To make
the results more repeatable and less
dependent upon operator expertise,
the test system is automated using a
PC and some sort of graphical soft-
ware such as Agilent VEE or National
Instruments LabVIEW.

Graphical software, often used for
design validation testing, gives the
engineer a more comprehensive set
of tools for control and analysis,
while at the same time creating
a more repeatable measurement
process that may include remote
control of sources, measurements,
and system switching. The same
instruments used in the R&D bench
system are often used in design
validation. This gives continuity to
the whole process, so that the initial
R&D measurements can be compared
to those made for design validation.

Textual software generally provides
an effective programming environ-
ment for manufacturing test, as
it enables the engineer to extract
the highest throughput from the
test system. In manufacturing,
repeatability and reliability become
paramount concerns. Again, if the
same equipment can be used for all
three test situations (R&D, design
validation, and manufacturing), then
the R&D engineer can more readily
assist with any problems that may
arise during manufacturing test.

1. Introduction to Test-System Design

10 �

The process of designing and
integrating systems used for elec-
tronic test requires more than simply
coding instrument commands to
automate the measurements made
on the R&D bench. The instruments
are only one part of the complete test
system; cables, software, test-plan
documentation, and fixturing are
equally important. The latter are
especially prevalent in a manufac-
turing environment.

Test-system
considerations
There are many factors to consider
when developing a test system. The
three main driving factors are test
requirements, development time,
and test cost. The factor that is most
important will drive the other two.
For example, if the test requirement
is for a very accurate measurement,
as in R&D or design validation,
you must be willing to take a bit
more time to achieve the required
accuracy. On the other hand, the
manufacturing manager would not
be pleased if the test system were to
perform more tests than required,
or perform them at a higher-than
needed level of accuracy, due to the
obvious impacts on test-system cost
and throughput.

Before the process to design a test
system can begin, you must have
a good understanding of the test
application. This goes beyond simply
understanding the device you are
testing, as you must also be aware
of other factors such as the skill
level of the test system operator,
the operating environment, and any
standards requirements.

Planning your test system
Creating a comprehensive test plan
allows you to take a big-picture
view of the project and forces you to
focus on meeting the objectives and
requirements for the test system. The
result is a considerable time saving
in the development process.

Even in the R&D environment, there
are times when it is useful to create
a test plan, so that you can docu-
ment and compare results after each
design cycle. You must also consider
the future for any test system you
create today. It may be reasonable
to create a dedicated and somewhat
inflexible test system on some
high-volume projects, but it is usually
more appropriate to create a system
that has the flexibility to adapt to
future needs.

The test plan describes more than
just the requirements of the DUT. It
should also cover other areas of the
test such as the level of experience
required of the test system operator,
calibration and maintenance require-
ments, physical limitations, and
throughput requirements.

The first step in creating a test
system is to seek out and compile all
the information needed to create an
overall test plan. Important informa-
tion includes the following:

•	functional and parametric tests to
be performed

•	DUT design validation criteria

•	format and usage of test results,
including sharing data throughout
the enterprise

•	number of tests

•	DUT pin counts

•	physical constraints such as size,
environment, and available power

•	heat buildup and power dissipation

•	how the test system will be veri-
fied, maintained, and calibrated

•	RF environment

•	accuracy and resolution
requirements

•	throughput goals

•	development time constraints

•	software-development and runtime
environment

•	cost constraints

•	continuity constraints with
existing legacy systems

Among the decisions involved in
determining the design of a test
system, the most obvious is what it is
you must test. This is usually defined
in a test specification. The test speci-
fication should include a complete
list of the product functions to be
verified, operating parameters to
meet, and any regulatory standards
to adhere to.

Accuracy
System accuracy is a critical speci-
fication of any test system, and the
overall test plan should include both
the accuracy requirements of the test
and the recommended margin. As a
minimum, the test equipment should
have twice the accuracy specified for
the DUT. To maintain this margin
requires that the operating tempera-
ture be maintained closely and
that calibration cycles be followed
faithfully.

10 � 1. Introduction to Test-System Design

11
www.agilent.com/find/open

Often, it is more cost effective to buy
test equipment with a 10X accuracy
margin so that calibration and
maintenance requirements can be
relaxed without affecting accuracy.
In the “10X” case, you may even
increase the product yield, since
the product can come closer to its
specification tolerance limits because
you can count on the accuracy of the
test system. Whatever the accuracy
required, you must have confidence
that you can rely on the results.
Obviously, a calibration and mainte-
nance plan is important for achieving
the required test accuracy.

When determining instrument
requirements, resolution must
be specified as well as accuracy.
Accuracy defines how close a
measurement agrees with a stan-
dard value. Resolution indicates
the smallest change that can be
measured. There may be times
when the absolute accuracy over
an extended period is not as impor-
tant as the resolution to measure
small changes over the short term.
Switching, fixturing, and cabling also
add noise and crosstalk that can
increase uncertainties.

Throughput
Throughput requirements will direct
the necessary system capacity.
Throughput is normally more
important in the manufacturing
environment than during design
validation and rarely a concern
in R&D. However, some complex
designs require lengthy testing to be
validated before going into produc-
tion. A significant delay during R&D
or design validation can cause a
product launch to be delayed, and
be costly in terms of missed market
opportunity.

Downtime seriously degrades
test-system throughput and can
have a significant impact on product
shipments. Predicting and preparing
for wear-out mechanisms can reduce
downtime. Further, using diagnostics
or built-in test can help determine
when the test system is about to
fail. Such preventative maintenance
procedures can result in big savings
when they identify a test system
failure before many DUTs are errone-
ously tested. In all cases, whether in
R&D, design validation, or manu-
facturing, you should consider how
you will handle downtime, either
with spare test equipment or with a
known path to repair or rental.

The overall test plan is a good place
to describe what diagnostics the test
system will require. It is easy to over-
look test-system diagnostics as time
consuming and costly to develop.
Diagnostics are an important tool for
maintaining throughput by reducing
the downtime to repair failures. On
most systems, a well-thought-out
diagnostics approach will shorten
test-system deployment time as
well. Developing and following a
calibration and maintenance plan
in conjunction with the diagnostics
is another way to prevent system
failures that disrupt test-system
throughput.

Results
Obviously, all tests must produce
results. Sometimes this is merely a
simple pass/fail indication, but often
test results must be analyzed and
archived. These requirements must
also be defined in the overall test
plan. If the test sequence is short,
a few minutes or so, it is simpler
to perform all data analysis after
the test is over. However, if the test
sequences are lengthy, some interme-
diate data analysis is recommended
so that failing functions can be
detected early enough to halt the test
and avoid wasted time.

Hardware/software decisions
Once the requirements of the test
system have been established in the
test plan, then it is time to outline
the design of the test system itself.
The question is: What to consider
first—software or hardware? In the
past, the hardware provided the lead
in test-system development. The test
instruments that met the accuracy
and throughput requirements were
defined first, and then software was
created to automate the test system.

But today, software can often be
more expensive to develop than
the cost of the hardware, so if test
system cost is a driving factor, it is
important to make sure that a new
system can use as much existing
software as possible.

The choice of programming languages
may be based primarily on the expe-
rience of the programmer. Some find
graphical languages such as Agilent
VEE or LabVIEW easy to use. Others
believe that textual languages such
as C++, MATLAB or Visual Basic are
easier to use, especially for complex
test programs. If it is important to
use existing textual test code, then a
multi-language development environ-
ment like Microsoft® Visual Studio
.NET is a definite advantage. For a
thorough examination of test-system
software options, see Chapter 4,
Choosing Your Test-System Software
Architecture.

In any case, it is critical to ensure
that drivers exist for the selected
equipment. If the required drivers
and support are not available, the
anticipated advantages provided by
the selected language may not mate-
rialize. Driver issues are discussed
in detail in “Understanding Drivers
and Direct I/O.”

Control decisions
A major consideration for a test
system is the level of automation to
build into the system to control the
test process. Manual control requires
that a human operator make all of the
test connections, set the instruments,
and then record the data. Increasingly,
even in simple R&D setups, most
engineers prefer to use instruments
under the control of a PC in order to
have a record of the test.

Once the testing becomes more
complex or repetitive, a fully auto-
mated test system is in order. A fully
automated test system takes care
of signal switching, measurement,
recording, and even analysis of the
results for pass/fail determination.
Once the DUT is in the test fixture,
the test system takes over and runs
all of the tests. This is the ultimate in
terms of test speed, reliability, and
repeatability, but it is also the most
expensive and time consuming to
develop.

The type of control, either manual,
semi-automated, or fully automated,
should be determined early as it
will influence which instruments
you select. As shown in Table 1.1,
many factors influence which control
method is most suitable for your
application.

Table 1.1. Comparison of test system control options

Manual Semi-automated Automated

Instrument cost Varies; can be higher than
automated, since R&D typi-
cally needs more accuracy
than production specs

Similar to manual Depends on requirements; if space is
paramount, cardcages can be used, but
they are typically more expensive than
standalone rack & stack instruments.
Modular instruments may meet space
needs with full compatibility to rack and
stack instruments

Development cost Very low; just hook up and
go

Low or high depending upon
how much is automated

High

Operator experience Very high, often experienced
engineers

High as the manual portions
of the system may require an
engineer

Low

Development time Low Low to high High
Flexibility High; changes can be made

easily
Medium; some portions can
easily be changed.

Low; changes require significant effort

Throughput Low Medium High
Repeatability Varies with expertise Medium High
System calibration Rare; usually only each

instrument is calibrated
Some system calibration may
be possible

Full system calibration is possible

Self-check diagnostics Individual instruments only,
not system diagnostics

Individual instruments only,
not system diagnostics

Common

Ease of instrument reuse High Medium Low if card cage, medium if stand alone
or modular instruments

Potential for human error High Medium Low

12 � 1. Introduction to Test-System Design

13
www.agilent.com/find/open

Figure 1.1. A test system using manual control requires a skilled operator.

Manual control
A test system based on manual
control depends entirely on the
operator for all test functions (Figure
1.1). Connections between the DUT
and instruments are made manu-
ally with test leads or cables. R&D
engineers may follow procedures that
are completely undocumented, but
when using a manual control system
for other test requirements, each
instrument is normally manually
operated by following a documented
procedure. The results of each test
are then manually recorded. This
is a very flexible approach as it
allows changes to the test system to
be made very easily. On the other
hand, it is a very slow method of
testing and has significant problems
with repeatability. For example, the
engineer may make readings one time
with the voltmeter at full scale, while
the next reading might be at 1/10
of full scale, resulting in a slightly
different answer.

Manual control is often the least
expensive test-system control option
to set up, since it may not include
such items as a system switch, expen-
sive software, or test fixtures. Also,
the time and cost required to set up
the test are very low. However, the
instrument cost for manual control
varies. Often, the R&D application
calls for a more accurate measure-
ment than the equivalent measure-
ment needed in manufacturing and
therefore requires rather expensive
instruments.

The cost to conduct the test is usually
very high. Manual control generally
requires a skilled operator to follow
the labor-intensive test procedures.
System self-testing is almost impos-
sible, and complex and frequent cali-
bration is often required due to the
high accuracies needed. Typically,
only the individual instruments are
calibrated and not the entire system.
As a result, inexperienced engineers
may believe that the overall system
accuracy is better than it actually is.

Repeatability is a concern with
manual test systems. There are many
opportunities for operator error to
go unnoticed. These errors creep
in when the operator is attaching
cables, setting instruments, recording
results, and even when transferring
the results to other documents.

Even with these limitations, the
manual approach can be useful. With
due diligence while conducting the
test and techniques such as using the
same cables to increase repeatability,
the manual approach can produce
reasonably reliable results. Another
advantage of manual control is the
ease in which the test system can be
reconfigured or the instruments used
for other projects.

Additionally, a skilled engineer
conducting the tests is constantly
comparing the results against
expectations, thereby providing a
form of continuous verification of the
test system. An incorrectly operating
fully automated test system could
continue to test for hours, days, or
even weeks without detecting the
problem, resulting in the shipment of
incorrectly tested products.

Use manual control when

•	a small number of devices are
being tested

•	cost of automation outweighs
benefits

•	speed of test is not critical

•	test requirements may change
regularly

•	the delay to create an automated
system is unacceptable

•	skilled operators are available

•	the instruments need to be easily
disassembled for use elsewhere.

Semi-automated control
Semi-automated control is a common
type of control approach used for
test systems, and is useful in R&D,
design validation, and manufacturing
test (Figure 1.2). Test systems using
this control approach have manual
portions for flexibility where it is
needed and automation where it
makes sense. Those sections of the
test system that are expected to
change often or would be too expen-
sive to automate can be manual.
Those sections that will not change
or would benefit from automatic data
recording can be automated.

A semi-automated test system might
require the operator to manually
connect the DUT, provide instruc-
tions to the operator for the proce-
dural steps, and automatically record
the results. For example, a semi-
automated system might have an
oscilloscope and an RF source that
are under computer control, with a
power supply under manual control.
The engineer would vary the voltage
to the DUT via the power supply, run
a set of tests at this voltage level, and
then manually change the voltage
and run another set of tests.

Semi-automated control is often
much faster than manual control
and produces a more reliable and
repeatable result. This method
of control can take advantage of
simplified software development with
Agilent’s VEE or Visual Studio .NET
for quickly creating the required
automation.

The most common type of test equip-
ment includes a fully functional front
panel and a computer interface that
allows both manual and automated
use. This is a major benefit, even
when automating, as you can always
go back to a manual approach if you
need to measure other parameters,
troubleshoot the system, or conduct
an experiment. These standalone
instruments are beneficial when
developing a fully automated test
system for manufacturing as it is
common to start with a semi-auto-
mated system and then increase the
level of automation as experience
and production volume increases.

Use semi-automated control when

•	automation benefits will outweigh
added costs

•	test volume does not require full
automation

•	some flexibility in the test system
is required

•	reasonably repeatable results are
required

•	skilled operators are available or
close by

•	a move to full automation is antici-
pated but not yet required

Figure 1.2. A test system using semi-automated control often uses a
PC for the operator interface.

14 � 1. Introduction to Test-System Design

15
www.agilent.com/find/open

Automated control
Fully automated test systems are the
domain of complex design validation
testing or the manufacturing test
environment (Figure 1.3); they are
rarely used in R&D. All of the instru-
ments, signal switching, and connec-
tions to the DUT are controlled by
computer. In some automated test
systems, an operator may be required
to manually install the DUT into a
test fixture as a single action, but
others have an automated handler to
insert and remove the DUT from the
test fixture.

Full automation is the most expen-
sive control method in terms of
software development time, but it
also results in the highest throughput
and most repeatable and reliable
measurements by nearly removing
the human-error factor from the
test. The skill level required of the
operator is usually much reduced.

Full system calibration and diagnos-
tics are easier to implement in an
automated system where software
can reconfigure the test system to
allow it to test and calibrate itself
against an external traceable refer-
ence. Full system calibration can
even calibrate the cables and connec-
tions instead of just the individual
instruments.

Proper diagnostics designed into an
automated test system can test most
of the system. You can create a diag-
nostic device that plugs into the DUT
fixture. This device will connect test
stimulus signals to test measurement
instruments. Diagnostic software you
create will then configure the test
system to verify operation through
the same switches, cables, and
connectors that are used for testing.

There must be compelling reasons to
justify an automated test system. Not
only is the initial development cost
high, but any changes or upgrades
to an automated system can be
very expensive. The compelling
reason for the expense is usually the
high-volume requirements of manu-
facturing test, but there are times
during R&D and design validation
when the required accuracy is very
high or the test is very complex,
making it necessary to automate
the test to remove potential human
errors or speed up the test process.

Use fully automated control when

•	high-volume manufacturing
requires automation

•	precision or repeatable tests are
required to test the DUT

•	reducing test time is critical

•	test requirements are known and
stable

•	cost per test outweighs test-system
development cost

•	time is available for development

•	skilled operators are not available

•	accuracy or complexity require-
ments dictate automation

Figure 1.3. A fully automated test system requires minimal
operator interaction.

Planning for the future
When making test-system design
decisions, you should keep future
needs in mind. Upgrades are a fact
of life for a test system. They can be
very expensive and time consuming
but are often unavoidable. Naturally,
any upgrades must justify the expense
and effort required. Reasons for
upgrades include

•	accommodate changes in design
of the DUT

•	conduct additional tests

•	obtain higher accuracy

•	obtain higher throughput

•	eliminate redundant tests

•	rearrange the test sequence to
detect failures earlier

•	improve analysis

•	automate more of the test

•	decrease the skill level required
to operate the test system

•	replace obsolete equipment

•	change reporting requirements

•	upgrade the operating system

•	conform to new standards

•	add newly developed models

•	repeatability is important

A few moments considering the
future can have a significant impact
on future options. For example, when
selecting instruments for a manual
system, there is usually very little
added cost to select instruments
that have computer interfaces. You
may not need the interface today,
but computer control is not possible
without it (and could be costly,
difficult, or even impossible to add
at a later date).

Using open standards will increase
the likelihood that test system
components will be useable in
the future. Proprietary interfaces
have a habit of disappearing or
not supplying the drivers you need
for future software options. Using
proprietary measurements made by
specific equipment in a test system
from manufacturers that do not
supply future upgrade paths could
make an entire test system obsolete
if that exact instrument is no longer
available.

Consider where the instrument
architecture is in its lifecycle. For
instance, is it a cardcage design
based on a PC backplane that will
soon be replaced? Are vendors
designing new products to this archi-
tecture (or to its replacement)?

Following proper software design
techniques resulting in well-written
software that is easily understood,
maintained, and modified is an
obvious requirement for future
upgrades. Good documentation is
also critical to the future of a test
system: Chances are you will not be
the one that is tasked with future
modifications.

Conclusion
Although test-system development is
a complex task that can include many
aspects of electronic and mechanical
design, following a systematic
approach and partnering with quality
test equipment manufacturers will
enable you to enhance your success
while lowering the cost and time it
takes to create the test system.

Case study: testing power
supplies
This case study is an example of how
a test system can evolve from R&D to
design validation to manufacturing.
Many of the same instruments are
used in all three areas with the major
difference being the type of control
used. This is a common practice as
the knowledge gained in each phase
of product development is trans-
ferred to the next.

Manual control
When developing a product such as
a power supply, the R&D engineer
will create a test system as required
to explore options and verify results.
The test bench in Figure 1.1 is
typical of such use. Many instru-
ments are within reach and it is easy
to rearrange them as needed. All
of the connections to the DUT are
made manually and each instrument
is manually operated. This is an
example of a test system with manual
control.

16 � 1. Introduction to Test-System Design

17
www.agilent.com/find/open

DC Power
Supply

Voltmeter

+

Output

-

DC/DC Power
Source

DUT

+

Output

-

+

Input

-

- In +

Internal
measurement

point

Current
Shunt

DC Electronic
Load

+

Input

-

Oscilloscope

In

Voltmeter

- In +

Voltmeter

- In +

Voltmeter

- In +

Figure 1.4. Block diagram of a manually controlled test system used for R&D

The flexibility to quickly move from
measurement to insight to next
measurement, whatever that next
measurement might be, is obvious.
Standalone test instruments readily
lend themselves to this usage model.
The high level of skill required of the
operator is also important. There is
significant opportunity for error and
confusion with a manually controlled
system. R&D engineers are in their
element at such a bench, but it falls
short on reliability and repeatability
when compared to other control
methods.

The block diagram in Figure 1.4
shows the interconnection of the
instruments for some of the tests
used during the R&D phase of power
supply development. Some of the
standard tests measure output-
voltage accuracy, output noise, load
regulation, line regulation and output
programming speed.

The test system diagrammed in
Figure 1.4 is just one example of
a manual setup for testing some
aspects of the design. Other R&D
engineers would have other manual
setups on their benches to test for
other parameters. In this case, the
total R&D manual test system is
actually distributed throughout the
benches of the entire design team.

More-specialized tests will also be
conducted at this stage. Loop gain
(Bode plot) is used to evaluate the
stability of the control loops used
to regulate the output voltage and
current of the power supply. Load
transient response is measured by
applying a load-current step change
and monitoring the output voltage on
the scope, also giving insight into the
stability of the control loops. Voltage
and current stress on the compo-
nents are also measured so power
can be calculated to ensure that no
parts are over stressed. The tempera-
ture of individual components may
also be measured.

As these measurements are made,
the test system is rearranged, the
cables are attached as required, the
instruments are manually controlled,
and the results are noted. Often, the
exact configuration is not recorded,
making an exact repeat of the
measurement difficult. The cable
connections are often made with
probes and clip leads in a manner
that is quick but not reliable. Even
so, the advantages to a skilled
operator far outweigh the problems
associated with manually controlling
a test bench.

Semi-automated control
The design is “complete.” Now it
needs validation, so the test require-
ments are somewhat different. In
this case, the same instruments
are used, but a computer is added
for semi-automated control. The
block diagram of Figure 1.4 remains
the same, but now a computer
is connected to some of the
instruments.

Many of the same measurements
are made during design validation

as were made during R&D. But now,
more of them can be made to fully
validate the design. For example,
the output accuracy of the power
supply under test can be checked
at a variety of operating conditions.
The input voltage, load current, and
even the ambient temperature can be
varied to ensure proper regulation
of the output voltage and that the
output noise is within requirements.
The same tests can be conducted on
multiple prototypes to ensure that
the design is consistent across units.
Further, these tests can be completed
much faster and include automated
data recording, enabling statistical
analysis.

The repeatability and reliability of
semi-automated control along with
automated data gathering are a
significant enhancement to manual
control. By selecting instruments
that include computer interfaces,
automating portions of the test
system is much easier. In many cases,
the automation is merely a matter
of having a computer perform the
commands and read the results that
were done by an operator.

Automated control
The move to a fully automated test
system may require additional instru-
ments. The computer now controls
all of the instruments as well as the
reconfiguration of the interconnec-
tions for various tests. The digital
multimeter, scope, and loads are still
used, but now switches are employed
to connect the DUT to the instru-
ments. As the tests are performed,
the computer uses the switches as
required.

The block diagram in Figure 1.5
includes connections to the DUT
and measurements that test the
power supply in the manufacturing
environment. The number of tests
performed may approach those
conducted during R&D and design
validation but they are normally not
as thorough. Manufacturing tests are
often performed only at one oper-
ating point that is considered to be a
worst-case condition. This maximizes
the amount of information gained
about the DUT in the minimum time.

Figure 1.5. Block diagram of a fully automated test system.

The speed, repeatability, and reli-
ability of the fully automated system
can be significantly better than that
of other test system control methods.
Also, the skill level of the operator
can be less. But the time and expense
to create the system and make any
changes usually makes automated
test systems only feasible for manu-
facturing uses.

18 � 1. Introduction to Test-System Design

DC/DC
power
source
(DUT)

Fixture

DMM

DC source

DC loads

MUX

Switch
matrix

Power switch

Function generator

Oscilloscope

AC source

19

Introduction
Whether you plan to use your
rack-and-stack test system for R&D,
design validation or manufacturing,
you are likely to program and control
your system with a PC. For decades,
the IEEE-488 bus, commonly known
as the general-purpose instrumenta-
tion bus (GPIB), has been the stan-
dard interface for connecting test
instruments to computers and for
providing programmable instrument
control. GPIB is still a common and
useful technology, but now other I/O
options are available. This chapter
explores the various I/O options and
helps you decide which interfaces
make the most sense for your test
system.

Proprietary I/O versus
industry-standard I/O
Most of today’s PCs offer built-in
Ethernet-based local area network
(LAN)and Universal Serial Bus
(USB)connections. These industry-
standard PC I/O technologies are
much faster than previous PC I/O
technologies such as RS-232, and
therefore are much more suitable for
automating and controlling test-and-
measurement instruments. IEEE
1394, or FireWire interfaces, while
not as ubiquitous as LAN and USB
ports on today’s computers, also are
readily available.

Using these industry-standard inter-
faces for communicating with your
test instruments can save you time
and money and reduce headaches
as you build your test system. Some
benefits of using industry-standard
I/O are immediate and obvious. For
example, with USB, you don’t have
the additional expense of purchasing
an I/O card, and you don’t have to
dismantle your PC to install the card.
The LXI standard has been adopted
by most instrumentation companies,
facilitating the widespread use of
LAN-based instruments.

There are other less obvious
advantages to industry-standard
I/O as well. Because the computer
industry employs thousands of
engineers who work on improving the
throughput rate and data integrity
of these interfaces, they are likely
to continue to improve more rapidly
than proprietary interfaces. Using
industry-standard I/O also makes it
easy to interchange instruments in
your system with instruments from a
variety of manufacturers.

Proprietary interface cards, such as
MXI and MXI-Express from National
Instruments are expensive, with
typical price tags starting about
US$1,000. You have to open up your
PC housing to install them. And if
you don’t have an open expansion
slot, you need to consider replacing
your computer.

Because of the inherent advantages
of industry-standard I/O and
customer demand for it, instrument
manufacturers are now providing
LAN and USB interfaces to their test
equipment. For example, the Agilent
33220A arbitrary waveform/function
generator, introduced in early 2003,
includes LAN, USB and GPIB inter-
faces. With the widespread adoption
of LXI, most new instruments are
likely to have a LAN interface.

If you want to use your existing GPIB
instruments in a rack-and-stack test
system, you don’t necessarily need to
use GPIB as your interface. Agilent
also offers converters—USB/GPIB
and LAN/GPIB—that allow you
to use your GPIB-equipped test
instruments with USB- or LAN-
equipped PCs, eliminating the need
to install a GPIB card in your PC.
National Instruments also offers a
FireWire/ GPIB converter. The next
chapter looks at GPIB and the two
main industry-standard interfaces,
LAN and USB, and explores the
applications where each is most
appropriate. (FireWire interfaces are
used primarily for VXI test systems.
You will find more information
about VXI in Chapter 5, Choosing
your Test-System Architecture and
Instrumentation.

2. Computer I/O Considerations

20 2. Computer I/O Considerations

GPIB interfaces
GPIB is the most common interface
for programmable test-and-measure-
ment equipment. It is still one of the
best choices if you want to maximize
throughput for a variety of block
sizes. GPIB is a parallel bus that
includes control lines, handshake
lines, and 8 bi-directional data
lines—specifically designed for instru-
ment communications and control.
GPIB supports up to 14 devices that
can be connected to your PC. You
can use either a star or a daisy-chain
configuration for connecting multiple
instruments (see Figure 2.1), but
cable length is limited to 2 meters
(times the number of devices) up to a
maximum length of 20 meters.

You can achieve data transfer rates of
more than 500 KB/s on a GPIB bus if
you limit bus cable length to 1 meter
(times the total number of devices),
up to a maximum length of 15
meters. Longer cable lengths reduce
the maximum data transfer rate to
less than 500 KB/s.

When you use GPIB, configuring the
instrument I/O bus is a relatively
easy task. However, each instrument
on the bus needs to have a unique
address. This requirement means
you may have to manually change
an instrument’s address when you
configure your system.

GPIB has other drawbacks, too. GPIB
cables and connectors are rather
large, bulky, and relatively expensive.
And because GPIB isn’t a standard
built-in PC interface, you have to
open your PC housing and install an
interface card in one of your PC’s
expansion slots.

To communicate with instruments
over GPIB, you need to install an
I/O software package. Plug and
Play drivers, IVI-COM drivers, and
VISA (Virtual Instrument Software
Architecture) are examples. These
packages support popular languages
such as C and C++, Microsoft
Visual Basic 6.0, Visual Basic .NET,
MATLAB, Agilent VEE, LabVIEW,
and others.

USB interfaces
USB was originally intended as
an alternative to the RS-232 serial
interface and the Centronics parallel
interface, an older standard I/O
interface for connecting printers and
certain other devices to computers.
USB is suitable for a range of
computer peripherals, from slow
devices, such as mice and keyboards,
to high-performance devices such
as scanners, printers, and cameras.
Now, USB is finding its way into
test-and-measurement instrumenta-
tion, too.

USB is a serial interface bus that
includes two power wires and a
twisted pair to carry data. USB is
capable of data transfer rates of
about 12 Mb/s for v1.1, and up to
480 Mb/s for v2.0. In addition, v2.0
is fully backward-compatible with
v1.1. The main difference is the data
transfer rate.

USB is capable of supporting up to
127 devices on a given interface.
If you use a GPIB-based system,
you must ensure that instrument
addresses are unique, but USB
provides this function automatically.
When USB devices are manufactured,
they are given unique identifiers
based on the manufacturer, the
instrument serial number, and the
product number. When the device
is powered up and connected to a
controller, the controller detects
its presence automatically, and if
the host-side software drivers are

loaded, the instrument will be ready
to communicate on the bus. USB
devices also are “hot swappable,”
which means you don’t have to shut
down your PC to plug in or unplug an
instrument.

With USB, the computer schedules
and initiates all transactions. If you
are using a Windows NT® operating
system, you will find that it does not
support USB connections.

Figure 2.1. You can configure a GPIB bus in
either a daisy-chain or star topology, or you can
intermix these two configurations.

Daisy chain bus configuration

Star bus configuration

Instrument 1 Instrument 2

Instrument 1 Instrument 2

Instrument n

Instrument n

21
www.agilent.com/find/open

Configuring USB systems
USB cables and connectors are
considerably smaller than their GPIB
counterparts. However, device-
interconnect configurations for USB
are somewhat different from those
usually seen in GPIB-based systems.
Most USB instruments are equipped
with a single USB connector, so you
cannot daisy-chain multiple devices
together. Instead, you need to use a
hub to connect the devices to your
computer, as shown in Figure 2.2.
Not all test-and-measurement USB
drivers are designed to work with
hubs, so it is a good idea to check
with the manufacturer.

Hubs provide expansion capability
for USB, permitting multiple devices
to be connected to a single USB port.
These hubs are transparent to a
controller, and you can cascade them
up to five deep. Using hubs in your
system offers several advantages. For
example, many USB hubs include
LED status lights that indicate which
port is connected. Also, a hardware
failure at the interface to one
instrument, such as a shorted line, is
unlikely to cause an entire bus to fail.
This makes troubleshooting an I/O
interface fault in a large system with
many instruments a much easier
task than having to disconnect each
device in turn, as required in a GPIB-
based system.

Making USB connections
Connecting USB instruments to a
PC controller is also a simple task.
USB is especially useful with laptops,
since typically they do not have the
PCI slots required to install GPIB PCI
cards. Virtually every PC produced
within the last few years has several
USB ports already built in.

As with GPIB, communications
with instruments via USB requires
the installation of an I/O software
package. Plug and Play drivers,
IVI-COM drivers, VISA, and IntuiLink
software—supporting C/C++, Visual
Basic 6.0 and Visual Basic.NET—are
available with USB support.

LAN interfaces
You also can connect your test-and-
measurement instruments to a PC
via a LAN interface. Ethernet LANs
are almost universally available at
industrial and commercial sites, and
most PCs found in these facilities are
already connected to a LAN. With
the introduction of the LXI standard,
Ethernet-based LAN interfaces for
test equipment are becoming even
more common than USB connections.
Ethernet-based LANs commonly
support data rates of 100 Mb/s to
1Gb/s.

USB and LAN interfaces share
a number of features. They both
operate in serial mode, and both
use relatively small and inexpensive
cables and connectors (especially
when you compare the connector
costs to those of GPIB).

You will want an Ethernet switch
or router to interconnect multiple
LAN instruments in a test system.
Ethernet switches are readily
available today—and are relatively
inexpensive. Most provide network
status, or activity indication with a
series of LEDs.

Ethernet-based LAN devices typically
need to be configured to operate
properly on a network. However,
instruments that support Dynamic
Host Configuration Protocol (DHCP)
provide the capability for test
instruments to configure themselves
automatically to operate on a
network—if these services are avail-
able on the network. To simplify the
configuration task, LXI instruments
are required to support DHCP.

Instrument 1 HUBInstrument 2

Instrument 3

HUB

Simply device configuration

Multiple device
configuration with hubs

Instrument

Figure 2.2. USB configurations with a single
device and with multiple devices connected
through a huband with multiple devices
connected through a hub

22 2. Computer I/O Considerations

Connection methods
You can connect LAN-enabled instru-
ments several different ways. They
may be connected directly to a site
LAN (a workgroup LAN, intranet,
or enterprise LAN), or they may be
connected to a private LAN.

In private-LAN configurations, your
PC and your test instruments are
connected to each other via a LAN,
but they are not connected to a site
LAN. The simplest private-LAN
configuration consists of a controller
and only one instrument. See the first
illustration in Figure 2.3. You also
can connect multiple instruments
in a private LAN, as shown in the
second illustration in Figure 2.3.

If you plan to use your site LAN,
rather than a private LAN, you
need to be aware of two potential
drawbacks:

1.	 Traffic on your site LAN can slow
down your measurements.

2.	 If you are using a LAN interface
for controlling your test system,
it is possible that a faulty instru-
ment could damage or disrupt
the network, particularly when
the instrument is turned on
and tested for the first time.
Controlling your test instruments
via a private LAN is the safest
approach, since it limits the range
of potential disruption and access
and maximizes performance.

For all setups, you can connect
instruments to the LAN either with
a conventional LAN cable or through
a wireless adapter. Wireless routers
and hubs also are available, as are
wireless USB-to-LAN interfaces. See
Application Note 1909-3, Creating
a Wireless LAN Connection to a
Measurement System.

Remote access
A site LAN has the potential for
permitting any controller on the LAN
to access instrumentation—either
intentionally or unintentionally. If
the site LAN can be accessed from
physical locations outside of your
facility, then others can access your
instrumentation. This open access
can be a valuable asset because it lets
you remotely control instruments
and systems almost as easily as if
they were next door. You can use
remote access capability to diagnose
system and instrument faults from
faraway locations. Multiple engineers
can share the expensive test instru-
ments and systems from remote
locations.

However, this open access also can be
a disadvantage. For example, if the
site LAN is connected to the outside
world to provide Internet access, you
face a serious risk of exposure to
undesired system accesses. Firewall
software and/or using a router which
requires specific device addressing
rather than a switch or hub can
provide protection.

If you want remote access to your
test equipment, but security and
controlled access are a system
requirement, then you need a lockout
feature. Some instruments, such as
the 33220A function/arbitrary wave-
form generator, provide this feature
via an Allow List. An Allow List is
a list of remote LAN addresses that
are permitted to communicate with
the instrument. Any controller that
attempts to access an instrument
whose address is not on the Allow
List is rejected. This feature provides
a level of system security for those
instances where your system is
connected to a site LAN and is at risk
for inadvertent access.

You can also use a virtual private
network (VPN) for secure, remote
access.

To site LAN

Crossover cable

Instrument 1 Instrument 2

Instrument 1 Instrument 2

Switch

Simply connected private LAN

Simply connected site LAN

Multiple instrument private LAN

Instrument

To site LAN

Multiple instrument site LAN

ROUTER

Instrument

Figure 2.3. Single and multiple instrument configurations
can be connected to private LANs and site LANs.

23
www.agilent.com/find/open

Instrument communication and
operation over LAN
Instrument communication over
an Ethernet-based LAN requires
a software driver package if I/O is
to be performed via Plug-and-Play,
IVI-COM or VISA. It’s also possible
to use the TCP/IP’s sockets or telnet
to perform instrument I/O directly
without a host-side driver. In fact,
I/O operations using sockets provide
the fastest data transfer rates, since
the host-side driver is bypassed.

You can operate some LAN-enabled
test instruments via a virtual front
panel that appears on your PC
screen. Typically, the display looks
and acts like the actual instrument
itself (see Figure 2.4), and you use
your mouse to actuate buttons as
if you were actually pushing front-
panel buttons. The virtual instrument
display mimics that of the actual
instrument that may be thousands of
miles away. Agilent LXI instruments
allow both monitoring and control of
instruments from your web browser.

Which I/O interface
should you use?
To decide which I/O interface or
interfaces you use in your test
system, you will need to consider
many factors. These include data
transfer rates and block sizes, and
costs for cables, routers, hubs, and
PC I/O cards. Other factors include
I/O driver availability, and program-
ming requirements, as well as the
need for possible remote system
access.

Keep in mind that you do not have
to choose a single I/O interface.
Systems incorporating multiple
interfaces are particularly useful if
you have a mixture of older GPIB
instruments and newer instruments
with other interfaces built in. Today’s
advanced software tools that include
VISA technology eliminate the need
to talk to different kinds of I/O in
different ways. A minor change to
a single line of code is typically all
that is required. However, do not mix
interfaces on a single instrument—the
input and output must be on a single
interface—and make sure your soft-
ware drivers know which instrument
is using which interface.

To see an example system that
incorporates multiple interfaces
(RS-232, FireWire, USB, GPIB and
LAN), see Chapter 5, Choosing Your
Test-System Hardware Architecture
and Instrumentation.

Real data rates
You will notice that individual I/O
bus specifications for data transfer
rates usually give only the theo-
retical maximum transfer rate. The
actual data transfer rate that can
be achieved for any given system
depends on a number of factors.
These factors include PC micropro-
cessor speed, PC software and driver
overhead, I/O card hardware, and
instrument-specific hardware and
firmware.

Figure 2.4. Virtual front panel of the 33220A multifunction switch/measure unit

Gating factors on data rates
The data rates of a test system are
determined by the slowest device/
firmware/software in the system.

For example:

1.	A high-speed instrument with
integrated LAN controlled with an
older computer will be limited by
the computer processor speed and
possibly memory depth.

2.	A USB2 interconnect will operate
at a USB1 rate if the instrument,
USB hub and computer do not also
support USB2.

3.	An Instrument with a data transfer
rate of 33K bytes/second will not
transfer data any faster with USB,
LAN or a computer that is able to
transfer data at 1M bytes/second

24 2. Computer I/O Considerations

These variables make it difficult
to predict the actual data transfer
rate that might be expected for any
given system configuration. Table
2.1 shows a relative comparison of
data transfer rates for several data
block sizes among GPIB, USB v1.1,
USB v2.0, and LAN interfaces. These
data were compiled using the Agilent
Model 33220A function/arbitrary
waveform generator and a Hewlett-
Packard Kayak PC with an 800 MHz
processor running on a Windows XP
operating system.

For small data-block sizes of a few
hundred bytes, there is no appre-
ciable difference in bus speed, but
the higher-performance buses (USB
v2.0 and LAN) demonstrate a marked
improvement in the time required to
transfer large data blocks.

The differences in data transfer rates
between small and large data blocks
for any given interface are largely
due to variations in the latency, or
software overhead, required for each
of the interfaces prior to the start of
the actual data transfer.

If you’re looking for high throughput
in a test system, don’t be swayed
by the perception that high-speed
interfaces will always get you there.
In most test systems, the use model
is one of “Close a channel; measure a
point,” then “Close another channel;
measure another point.” In this case,
block transfer rate is meaningless.

The time to close the channel and
make the measurement dominates
the total time. GPIB’s strong perfor-
mance in this use model is one of the
reasons it has lasted so long as an
interface.

For a detailed look at data transfer
rates of two different block sizes
over the various interfaces, see
Application Note 1475-1, Modern
Connectivity—Using USB and LAN
Converters. This application note
compares the Agilent 82350B GPIB
PC card, the 82357A USB/GPIB
converter, and the E5810A LAN/
GPIB gateway in terms of controller
and operating system requirements,
set-up steps, data transfer rates,
allowable distances from instruments
to the PC, etc. These details will help
you choose the best interconnection
method for your application. One of
the benefits of having an instrument
that supports multiple interfaces
is the ability to easily compare the
actual data transfer rate for each of
the I/O interfaces in a given applica-
tion. This permits you to select the
interface that offers the optimum
performance.

If the application program’s
I/O calls are written with a driver
interface that provides a common
set of programming commands
independent of the interface, such as
Agilent’s VISACom, then it becomes
a simple matter to direct the I/O calls
to any of the three interfaces.

Comparing costs
Today, many companies are looking
for ways to lower the cost of test.
If this is true of your organization,
implementation cost will be an
important consideration in selecting
an I/O interface for your test system.

New PCs typically have a LAN and
several USB ports built in, but GPIB
interfaces usually require a card that
you must purchase separately. GPIB
cards typically cost about US$500
and additional USB or LAN cards
usually sell for US$10 to US$50.

Also, if you plan to use USB or
LAN interfaces to connect multiple
instruments in your system, you
will need switches or hubs. These
hubs can cost from US$25 to US$200
each, depending on features and the
number of ports they support.

You also need to consider the cost
of the cables for your test system.
GPIB cables are relatively expensive,
ranging in price from US$60 to
US$150 each, depending on their
length. USB cables, on the other
hand, range from US$8 to US$30.
LAN cables are usually the least
expensive, typically costing less than
US$10. Some can be found for as low
as US$3.

You can make useful cost compari-
sons by assuming that all test
instruments are able to support any
of the three interfaces and computing
the interface cost for your proposed
test system. Today, few test instru-
ments actually do support all three,
since the industry is just beginning to
provide instruments equipped with
multiple computer-industry-standard
interfaces. However, the I/O inter-
face converters mentioned earlier
permit GPIB-only instruments to be
connected to USB- and LAN-based
interfaces. For example, the Agilent
82357B USB/GPIB interface enables
your PC to communicate with GPIB
devices via the PC’s USB port.

Table 2.1. Relative I/O times from a PC to an Agilent 33220A (data taken with a 1-meter cable
on an HP Kayak XU800 with an 800 MHz processor running Windows XP)

Interface Function change Frequency change 4K arb 64K arb

LAN (socket) 100 ms 3 ms 8 ms 110 ms
USB 1.1 100 ms 4 ms 10 ms 185 ms
USB 2.0 99 ms 3 ms 8 ms 100 ms
GPIB 99 ms 2 ms 20 ms 340 ms

25
www.agilent.com/find/open

Similarly, the Agilent E5810 LAN/
GPIB gateway provides a means to
connect GPIB devices to a LAN (see
Figure 2.5.) These converters can
save you the cost of replacing your
existing GPIB test instruments if you
decide you want to use industry-stan-
dard I/O. However, these converters
are appropriate only for applications
where measurement speed is not
critical, as they do slow the data
transfer rate.

Let’s look at an example of a test
system designed to test the Agilent
33220A function/arbitrary waveform
generator. The test system consists
of a controller, a local printer, seven
rack-and-stack instruments, a fully
loaded 13-slot VXI mainframe, and
support for testing three 33220A
waveform generators.

As Table 2.2 shows, GPIB is the most
expensive scheme to implement.
Even with the added costs of USB
and LAN hubs, their reduced cable
costs and higher overall speed perfor-
mance makes them more attractive
alternatives.

From a systems perspective, hubs
and switches also offer some I/O
interface operational feedback that is
lacking with GPIB systems. Also, the
much smaller USB and LAN cables
and connectors take up much less
rack space, making system cabling
easier. They also weigh less.

Ease of implementation
USB is the simplest I/O to imple-
ment, and GPIB is also relatively
straightforward, as long as you don’t
mind the hassle of opening your PC
and installing an interface card. Since
LAN has become common in home
broadband applications, configura-
tion is becoming much easier, but
remains the most difficult of the three
interfaces to implement. However, for
many system developers, the advan-
tages of LAN far outweigh the added
development time required. Evaluate
your own situation to decide if that is
true for you.

Table 2.2. Typical costs for LAN, GPIB and USB interfaces

Interface	 Single instrument		 12-instrument system
LAN	 PCI card + cable	 $30	 PCI card + cables + 16-port switch	 $300
USB	 PCI card + cable	 $60	 PCI card + cables + 2 hubs	 $225
GPIB	 PCI card + cable	 $600	 PCI card + cables	 $1600

Figure 2.5. The Agilent E5810A LAN/GPIB Gateway and the 82357B USB/GPIB Converter.

26 2. Computer I/O Considerations

Conclusion
With the new generation of test
instruments offering a choice of
interfaces, you need to decide which
interface is best suited for your
test system. Comparing costs, data
transfer rates and ease of imple-
mentation will help you choose the
interface most appropriate for your
application (see Table 2.3). For R&D
applications, where the number of
instruments in a system is usually
small and a quick and easy interface
set-up is desired, USB is usually the
best choice.

Get help configuring your
I/O interfaces

Configuring an interface to connect
your PC to an instrument or system
can be a daunting task for someone
who is not well versed in the
intricacies of PCs, I/O technologies,
and I/O inter-face configuration.
In the past, this was especially so
for LAN-based I/O that required a
system to be connected to a site
LAN. Fortunately, step-by-step guides
such as Agilent’s USB/LAN/GPIB
Interface Connectivity Guide are now
available to help you to configure
your I/O interfaces. The Connectivity
Guide describes in detail how to
connect instruments to various
interfaces, and how to configure your
PC. It also includes programming
examples and interface trouble-
shooting tips. You can view the
guide at http://cp.literature.agilent.
com/litweb/pdf/E2094-90009.pdf

Table 2.3. Advantages and disadvantages of GPIB, USB, and LAN interfaces

Interface Advantages Disadvantages
LAN • Good data-throughput performance

• Low cost
• Remote access makes it easy to
control system from remote location

• Requires LAN knowledge to
set up

USB • Quick, easy setup
• Low cost
• Good data-throughput performance

• Does not work with Windows
NT

GPIB • Ubiquitous interface on test
instruments

• Maximizes throughput for all block
sizes

• PC expansion slot required
• Must open PC housing to install
card

• Relatively expensive
• Limited cable lengths permitted
between computer and
instruments

For design verification and manufac-
turing, USB and Ethernet-based LAN
are good choices, although LAN is
typically the better of the two alter-
natives for larger systems because
of its data-throughput performance,
cost, remote access, and ease of
system assembly.

The added flexibility, remote system
access and control, performance on a
par with USB, captive cable connec-
tors (which aren’t found on USB),
and the capability for wireless opera-
tion offered by the LAN approach can
make LAN the most attractive choice
for many systems applications.

27

3. Understanding Drivers and Direct I/O

Introduction
This chapter answers common
questions about the use of drivers
and direct I/O to send commands
from a PC application to the test
instrument. It discusses how the
driver came about, what the different
software layers do in a system to
help the instrument communicate to
the PC, which drivers are compatible
with various software languages
and I/O software, and references for
further study.

For the purposes of this discussion,
a driver is a piece of software
intended to simplify programming
and accelerate test-system develop-
ment by facilitating communication
with an instrument. In contrast,
direct I/O involves embedding
specific instrument commands
(typically called SCPI commands) in
your test software and managing all
of the input/output communication
yourself.

Even if you have never programmed
an instrument in a test system, you
have used drivers on your PC. Digital
cameras, printers and other periph-
erals all require a driver to talk to a
PC. Moreover, if you’ve ever upgraded
a PC, you may have found that the
old printer driver no longer worked
with the new operating system, and
you need to go online to find a new
one. Or you may have found that the
printer didn’t work exactly the same
way it did under the old operating
system. Similar issues exist with test
and measurement equipment.

In a September 2001 survey, Test
& Measurement World published a
summary of engineers’ worst head-
aches. Instrument drivers topped
the list. Instrument manufacturers

and various trade groups have been
working on driver standards for
some time, in an attempt to alleviate
the frustrations of engineers who
need to automate measurements and
create test systems on a deadline.
As a result of these efforts, we might
expect finding and using appropriate
drivers to be dramatically easier,
but at the moment, complexities
and incompatibilities are still
troublesome.

This chapter answers common
questions about the use of drivers
and direct I/O to send commands
from a PC application to the test
instrument. It discusses how the
driver came about, what the different
software layers do in a system to
help the instrument communicate to
the PC, which drivers are compatible
with various software languages
and I/O software, and references for
further study.

With new insight into these topics,
you should be able to choose, install
and use drivers more easily and
reduce the amount of time you
spend getting your instruments and
computer applications to talk to each
other.

History
The history of automated measure-
ments dates back to at least 1970,
when instruments began to be
connected via imaginative schemes
to devices resembling computers.
One popular I/O format involved
connecting a large cable to the
instrument (Figure 3.1). Each line
on the cable represented a function
or range, and the line was simply
grounded at the proper time. The
device, say a voltmeter, would return
a value using binary coded decimal
(BCD) 1-2-4-8 format, or a quainter
1-2-2-4 format. Needless to say, the
programming syntax of instruments
at this time was anything but stan-
dardized. However, since everything
was hardwired, the process was
straightforward and immediate.

GPIB
In 1971, development began on
a standard hardware interface.
The idea was to be able to trigger
multiple instruments at once and still
allow both slow and fast instruments
to “talk” on the same bus without

Your computer

Your instrument

Digital lines

64-pin connector,
data & control lines

Direct interface

Figure 3.1. Early instrument control utilized hard-wired commands.

28 3. Understanding Drivers and Direct I/O

conflict. The first products to use
this bus were released in 1972. The
same year this new bus was dubbed
Hewlett-Packard Interface Bus (HP-
IB). In 1975, IEEE adopted it as a
standard with little modification, and
IEEE-488 was born. A variant of the
original interface is now popularly
known as General Purpose Interface
Bus (GPIB).

With GPIB and a desktop computer
(actually at the time it was called
a “desktop calculator”), the need
arose for a common communication
language. Limited processing power
in the ‘calculators’ demanded a
simple syntax, so ASCII commands
were chosen. A DMM might be sent
what was affectionately termed
“R2D2 code.” Here’s an example:

“F1R2T1”

The command means “Go to the
dc volts Function, the 1 volt Range
and Trigger a reading.” Different
manufacturers had unique ways to
interpret the command strings, based
on their instruments’ capabilities.
If you had to replace a product with
one from another manufacturer, or
even a new-generation product from
the same manufacturer, it could
mean completely rewriting the entire
program. Later versions of IEEE 488
elevated the standard from being a
hardware-only standard to one that
also specified protocol.

SCPI
In 1989, seeing a need for more
clarity and interchangeability that
was available with simple ASCII,
Hewlett-Packard introduced a
programming language known as Test
& Measurement Systems Language
(TMSL). Within less than a year,
nine T&M manufacturers had met

to generate a universal approach to
instrument control, using TMSL as
the basis. The outcome was Standard
Commands for Programmable
Instruments (SCPI) (Figure 3.2).

Today, SCPI is still the most-used
form of instrument control. In
SCPI, the instrument programming
syntax became much more robust
and predictable. SCPI defined a
strict hierarchy, and every command
was associated with a concomitant
response. These were defined for
source, sense and switch devices.
Here’s an example of SCPI code:

CONF:VOLT:DC 0.3,0.003

This command tells the instrument
to configure itself to get ready to read
a 0.3 volt dc signal with 3-millivolt
resolution. It should be obvious from
this statement that SCPI commands
require some intelligence on the
other end of the wire, as not every
voltmeter has a 0.3 V range. The
commands need to be parsed by
the voltmeter and this parsing adds
a small layer of delay time to the
system.

One advantage of SCPI is that the
list of commands typically covers
100 percent of the instrument’s
programmable functions, no matter
how arcane. For a friendly tutorial on
SCPI, go to ftp://ftp.agilent.com/pub/
mpusup/pc/iop/hpibtut/ib5_scp.html.

The I/O software: SICL and
VISA
Instrument commands aren’t the
whole story. It takes more “layers”
of software to communicate with
a computer. Before you send the
instrument a command, you need
to define the I/O path, route the
information through the proper I/O
card, find out where the instrument
is on the bus and speak to the instru-
ment in the syntax of the I/O you’re
using. Assuming the GPIB I/O card in
the computer is at address 7 and the
DMM is at address 22 on the bus, the
simple BASIC command might be:

ASSIGN @Dvm to 722 !

Your instrument

Physical interface

Physical interface

SCPI parser

I/O software

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Your computer

GPIB

Figure 3.2. Compared to “R2D2” code, SCPI commands standard-
ize programming and make life easier for the programmer. SCPI
commands can access virtually any programming function in the
instrument, but the parser does add small delays to the process.

29
www.agilent.com/find/open

This tells the computer where to
send the command.

OUTPUT @Dvm;
“TRIG:SOURCE:INT” !

This sets the trigger source to
internal.

The above will work with a GPIB
interface, but if you try the same
thing using RS-232, the syntax is very
different. Switching between GPIB
and RS-232 would require rewriting
some code.

SICL
Standard Instrument Control
Library (SICL) I/O software was
subsequently developed to address
the challenges of updating or reusing
code. SICL was developed by HP to
make software as I/O-independent as
possible. It adds a layer on top of the
instrument code; this layer checks
to see what I/O is used and alters
the syntax accordingly (Figure 3.3).
The code looks the same, regardless
of I/O type. All you have to do is use
one line of code to declare the I/O
type at the beginning of the program.

SICL is not the only I/O software
available today. AGILENT VISA,
NI-VISA and NI-488 and VISA-COM
(from Agilent) perform similar
functions. That’s a dizzying array of
choices, so for now let’s concentrate
on VISA. While SICL software was
created to communicate with Agilent
interfaces only, VISA was created to
work industry-wide and is now the
preferred programming interface.

VISA
In the late 1980’s, there was a
move to build standardized card
cage instruments. This movement
led to a software and hardware
standard known as VME Extensions
for Instrumentation (VXI). Based
on the VME standard, VXI made
special modifications for software,
shielding, triggering, power supplies
and analog performance. VXI was
adopted by hundreds of instrument
manufacturers who produced a
wide variety of plug-in cards. VXI’s
interchangeability at the card level
brought about the need for common
I/O software, similar to HP’s SICL,
but implemented as an industry-wide

standard. Largely derived from the
SICL library, the VISA syntax was
born.

Virtual Instrument Software
Architecture (VISA) was created
by the VXIplug&play Foundation
to standardize I/O software across
physical interfaces and between
various vendors (Figure 3.4). In most
cases, test systems are not solely VXI,
but rather hybrids of VXI and “rack
and stack” architectures, so it was
not enough to create I/O software
exclusively for VXI. For that reason,
the VXIplug&play specifications
were extended to include traditional
standalone instruments as well as
both types� of VXI instruments.

�	 VXI has two types of instruments,
distinguished mostly by their local
intelligence. “Message-based” cards”
can react to a high-level message,
and usually have on-card parsing.
“Register-based” cards are just what
the name implies: cards that have
directly programmable registers.
Message-based cards can do more, but
are inherently slower, since they must
interpret complex commands.

Your instrument

Physical interface

Physical interface

Internal processor

I/O software (SICL)

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Commands sent over
GPIB, RS-232,
USB, LAN, etc.

Your computer

Figure 3.3. SICL I/O software reduces a test engineer’s programming
burden by making it easier to change I/O types (USB, LAN, GPIB, USB,
VXI, RS-232, etc) without recoding the program. SICL adds a software
layer, which has a small effect on system speed.

Your instrument

Physical interface

Physical interface

I/O software
(VISA,SICL, VISA-COM)

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Commands sent over
GPIB, RS-232,
USB, LAN, etc.

Your computer

Figure 3.4. VISA is the most popular form of I/O software.
Drawing heavily on the work done for SICL, VISA was created to
serve multiple T&M suppliers and be a universal standard. VISA-
COM is a new variant of VISA.

30 3. Understanding Drivers and Direct I/O

Today’s two main suppliers of
VISA are Agilent Technologies and
National Instruments. (In 1999,
the engineers from HP Test &
Measurement who were involved in
instrumentation were split from HP
in the new venture now known as
Agilent Technologies.)

VISA I/O software uses common
terminology and syntax to connect
to and control instruments. A VISA
library supports complete control
of instrument across the physical
interfaces GPIB, RS-232, USB, LAN
and VXI.

The VISA library provides the
capability of SICL, in a way that
conforms to industry standards.
A program written to work with
Agilent’s VISA library will work with
implementations of VISA from other
vendors. For those accustomed to
using SICL, Agilent’s implementation
of VISA is provided along with its
SICL libraries. (Since the introduc-
tion of VISA, programming based on
the SICL library has gradually been
phased out in favor of the industry-
standard VISA library.)

To program a new test system, the
test engineer installs the appropriate
I/O library along with the application
programming language. VISA was
originally developed to be used with
C and C++, but can also be called
from any language that can call arbi-
trary Windows dynamic-link libraries
(DLLs), including Microsoft® Visual
Basic. Agilent provides header files
to facilitate the use of VISA in Visual
Basic.NET and C#. These can be
downloaded from http://www.agilent.
com/find/iolib.

PC industry adds language
independence
As I/O development was proceeding
in the T&M industry, the PC industry
was making big strides in I/O-inde-
pendence and language-indepen-
dence. In 1994, Microsoft stated: “The
Component Object Model (COM) is
a software architecture that allows
components made by different soft-
ware vendors to be combined into a
variety of applications. COM defines
a standard for component interoper-
ability, is not dependent on any
particular programming language, is
available on multiple platforms, and
is extensible.”�

In February, 2001, Microsoft intro-
duced .NET, its 3rd generation of
component technology. .NET has
been applied to Microsoft’s inte-
grated development environment,
Visual Studio®.NET, as well as MS
Office, other applications, operating
systems and web services.

�	 Dr. Dobb’s Journal, Microsoft Corp.
December, 1994.

The benefits of these PC software
technologies are compelling, but
should the test and measurement
industry embrace PC operating
systems?

Detractors point out the frequent
operating system upgrades in the PC
industry relative to T&M languages.
However, as Figure 3.5 indicates,
COM—which is integral to .NET
components—has been around longer
than most T&M standards. It seems
only logical to take advantage of the
investments Microsoft has made to
create this paradigm shift. With 3,000
engineers working for three years on
the first version of .NET, Microsoft’s
investment is twenty times that of
the leading T&M language. Similar
correlations apply to software. Visual
Basic has over 6,000,000 users, and
C/Visual C++ has 1,000,000 users
worldwide. This will result in an
unprecedented body of software
the average engineer will be able to
leverage.

PC software
industry

T&M
industry

In
cr

ea
si

ng
 s

of
tw

ar
e

in
te

rc
ha

ng
ea

bi
lit

y

1980's 1990's 2000's 2010's

Microsoft:
COM

Microsoft:
ActiveX

Microsoft:
.NET components

IVI-COM
(components)

IVI-C
VISA-COMVISA

VXIplug&playSICL

Figure 3.5. PC Software Overtakes T&M Software in interchangeability. The millions of people us-
ing Visual Studio software will afford the engineer an unprecedented pool of available intellectual
property.

31
www.agilent.com/find/open

VISA-COM
To incorporate this programming
language independence, Agilent
initiated a VISA-COM standard as a
companion to the VISA specification.
VISA-COM software makes VISA
services available in a language-inde-
pendent COM component architec-
ture. As a result, you are free to pick
from popular I/O configurations,
but now you also have the freedom
to choose from a list of software
languages, including C++, C# and
VB.NET.

When using Agilent VISA-COM, you
also need to install Agilent VISA.
Agilent IO libraries are shipped along
with Agilent instruments, software
and I/O products.

Choosing and using
instrument drivers
By managing both the overall
communication between the PC
and the instrument as well as all
the details of command syntax and
instrument functionality, drivers
are clearly essential considerations
in test-system development (Figure
3.6). Without drivers, you’re forced
to either memorize or look up the
direct I/O SCPI commands related
to the particular instrument being
programmed. If you intend to code
in a proprietary language, then you
need to know how those commands
fit. For simple applications, this
approach works well, but as applica-
tion complexity increases, using
direct I/O can become difficult and
time consuming. Programming a
direct communication path usually

Your instrument

Physical interface

Physical interface

Parser

I/O software (VISA)

PC application software

Driver

Your computer

GPIB, RS-232, etc.

Figure 3.6. The driver is, among other things, a programming aid that works
between the PC application and the I/O software. It can save enormous
amounts of development time and prevent coding mistakes.

requires you to know a specialized
computer programming language and
its programming environment and
to be familiar with proper command
sequences and interrelationships
between commands. You also need
to know how to load and configure
various I/O libraries and parse
instrument responses that may be
in the form of binary data or screen
graphics. Whether you have these
competencies or not, when today’s
product design cycles are measured
in months rather than years, it
doesn’t make sense to spend several
of those months coding a new test
system, unless very high volume
production is the goal.

However, even will all these potential
disadvantages, there are times when
using direct I/O can be a better
choice than using a driver; see “When
should I use a driver?” on page 33.

32 3. Understanding Drivers and Direct I/O

Drivers come in many forms and
offer various levels of functionality.
A driver can be as simple as a list
that pops up when you hit the next
“dot” in Visual Basic, or it could be
as elaborate as a “panel driver” that
displays a virtual front panel on the
screen of your computer to help you
set up the instrument (Figures 3.7
and 3.8).

Driver coverage
A simple DMM may have only 25
commands, whereas a more complex
instrument may have hundreds.
You can imagine how expensive it
is to write an intelligent driver that
anticipates all the possible permuta-
tions of instrument setup, triggering,
sourcing and measurement. And
that’s why you’ll seldom see a driver
that covers every command in the
instrument.

Instrument manufacturers take their
best guess at the commands you are
likely to use and craft the driver
accordingly. A typical IVI driver (see
“IVI drivers”) covers about 40-60
percent of the instrument’s command
list. This may sound like a small
number, but consider this: Agilent
surveyed customers who used the
3852A Data Acquisition/Switch Unit,
a complex instrument with over
300 distinct commands. By poring
over customers’ code, we found they
rarely used more than 5 percent of
the available commands. This is an
extreme case, but it tells you that
40-60 percent coverage is a good
start. And even if a driver doesn’t
incorporate a particular command,
there are ways to send commands
directly yourself (Figure 3.9).

Your instrument100%

capability

100%

instrument

capability

60%

instrument

capability

Physical interface

Physical interface

I/O software (VISA)

PC application software

Direct I/O
(native instrument

commands)

Driver

Commands sent over GPIB,
RS-232, USB, LAN, VXI or
other physical interface

Your
computer

Figure 3.9. If you are using
a driver and need to access
instrument functions the
driver doesn’t have, you can
send direct SCPI or ASCII
commands, or go through
the driver with pass-through
commands to control the
instrument directly. This
gives you the convenience of
drivers, with the 100 percent
coverage of direct I/O. To
avoid command conflicts, this
technique requires in-depth
knowledge on the part of the
programmer.

Figure 3.7. Agilent’s T&M Programmers Toolkit using a VXIplug&play WIN32 power supply driver in
VB.NET.

Figure 3.8. A tiny but interesting program, written in VEE. With its intuitive interface, VEE is the
fastest T&M graphical language to learn. Fill in the boxes, and the VEE panel driver generates code
for you. See http://www.agilent.com/find/vee.

33
www.agilent.com/find/open

Figure 3.10. The three generations of drivers represent varying degrees of language independence.
IVI-COM is the newest and the one supporting the widest variety of software environments.

Driver evolution
There are three basic generations of
drivers: proprietary T&M drivers,
traditional T&M drivers and compo-
nent PC drivers (Figure 3.10). These
represent the past, present, and
future of driver technology. In the
past, instrument drivers were custom-
designed to function with a vendor’s
own application development envi-
ronment (ADE). A considerable body
of legacy application programs uses
these proprietary drivers, but for
new development, engineers today
have better choices.

When you need to accelerate test
system design and deployment,
Agilent recommends the new IVI-
COM driver and the VXIplug&play
WIN32 driver for instrument control.
IVI-COM is the only component PC
driver built on the PC standard COM
architecture; the IVI-COM standard is
being led by Agilent and other instru-
ment companies. A component driver
built on COM works in all popular PC
languages and most T&M languages,
uses the most popular types of I/O
can be used in the latest .NET tech-
nologies and is backward-compatible.

When should I use a driver?
Use an instrument driver if

•	 A driver is available that works with
your development environment and
I/O software, and supports the
majority of instrument features you
want to use.

•	 You want easy access to commonly
used instrument functions because
the instrument commands are
typically organized in a hierarchical
structure.

•	 You want to simplify the process of
developing and maintaining your code
over time, because there is a single
point of interface to update or change.

•	 Software interchangeability is
important to you.

•	 You need to simplify maintaining the
system when instruments need to be
exchanged.

Use direct I/O if

•	 You have instrument programming
experience or access to programming
experts.

•	 You need to use instrument features
not supported by the available drivers
(the other 40–80 percent of the
instrument capability).

•	 You need the absolute maximum in
system throughput speed.

•	 You need to control the exact
configuration of the instruments in
your system.

•	 You have a large volume of legacy
SCPI-based code.

IVI drivers
In 1998, test and measure-
ment companies formed the
Interchangeable Virtual Instrument
(IVI) Foundation� to address the high
cost of developing and maintaining
test system software and the need
to evolve technology more rapidly
through the use of better drivers. The
foundation comprises end-user test
engineers, equipment manufacturers
and system integrators with many
years of experience building test
systems.

IVI classes
The goal of hardware interchange-
ability led IVI to the concept of
instrument classes. The idea is
simple: If you use a spectrum
analyzer, it certainly would save time
if you could program every instru-
ment in the spectrum analyzer class
the same way, no matter who built
it. Both the specification and any
specific driver that implements it
are called an IVI Class Driver (IVI-C
Class or IVI-COM Class).

As of this writing, the IVI Foundation
has defined the following instru-
ment classes: DC Power Supply,
Digital Multimeter (DMM), Function
Generator/Arbitrary Waveform
Generator, Oscilloscope, Power Meter,
RF Signal Generator, Spectrum
Analyzer and Switch. Others are
under development.

This work makes it much simpler for
the engineer to program instruments
from separate suppliers whenever
those instruments conform to a
particular class.

�	 For additional information, you can
visit the IVI Foundation website at:
www.ivifoundation.org.

Component PC
(based on

PC standards)

Traditional T&M
(based on T&M standards)

Proprietary T&M
(specific to one language)

Instrument driver families

IVI-COM
IVI-C

(via NI)
LabVIEW

Plug&Play
(VXIplug&play

GWN)

VEE
Panel

Drivers

WIN
VXIplug&play

LabWindows/
CVI Plug&Play

34 3. Understanding Drivers and Direct I/O

Finding drivers and technical
advice
Instrument vendors typically provide
drivers on a CD with new products
and offer their most up-to-date
instrument drivers on their Web
pages. For downloads or more
information on Agilent drivers, I/O
software, connectivity and applica-
tion software, join us at the Agilent
Developer Network: www.agilent.
com/find/adn. Note that we do not
post drivers written by other parties.
Because you are at the mercy of
whoever created the driver, it is a
good idea to use a driver supplied
by the same vendor who made the
equipment.

Third-party software and systems
integration companies that support
the test-and-measurement industry
can provide driver development tools
and services. Two such companies
are Pacific Mindworks (www.pacific-
mindworks.com) and Vektrex (www.
vektrex.com).

For advice on mixing I/O hardware
and I/O software from different
suppliers, see ftp://ftp.agilent.com/
pub/mpusup/pc/binfiles/iop/m0101/
readme/trouble/niinfo.htm.

Conclusion
If the project you are pursuing is not
complex, there are often situations
where you don’t even know you are
using a driver. Indeed, the ultimate
goal of T&M companies is to keep this
process entirely transparent. In the
meantime, if you do get embroiled
with issues of driver selection, note
there can be tradeoffs between speed
of development and speed of execu-
tion. The industry is working through
these issues by instituting faster I/O
and software aids, such as tools to
keep track of instrument states. The
whole idea is to give you both fast
programming and fast throughput.

If you choose to use a driver,
computer industry-standard IVI COM
drivers and a Visual Studio .NET-
compliant development program such
as the Agilent T&M Programmers
Toolkit give you significant leverage.
The T&M applications you develop
will show significant hardware and
software interchangeability, while
being easily maintainable and exten-
sible. Plus, the intellectual property
you create during the development
process will be widely transferable to
other projects.

35

4. Choosing Your Test-System Software Architecture

Introduction
This chapter will help you under-
stand the tools required to design,
develop and deploy the software
component of your test system
(see Figure 4.1). The information
presented here will help you choose
the direction for your software based
on the application you have in mind
and the amount of experience you
have. We will explore the entire
software development process, from
gathering and documenting software
requirements through design reuse
considerations.

•	Gathering and documenting software
requirements. Before gathering
and documenting your software
requirements, finalize your test
system hardware design. Once
finalized, start working with your
R&D and manufacturing teams to
collect the information you need
to create software requirements
specifications (SRS).

•	Programming and controlling your
instruments. The control of instru-
ments is rapidly evolving from
proprietary test and measurement
standards to open, computer-based
industry standards. This trend

and maintenance costs. Over the
life of a test system, software
support and maintenance costs
alone can exceed hardware costs.

•	Working with open standards. Today,
the industry trend is to move away
from closed, proprietary develop-
ment environments. More and
more people are embracing open,
industry-standard development
environments as their platform of
choice for test-system development
projects. Making the right choice
now will give you the flexibility and
capabilities you need in the future.

•	Developing a test sequence. Test
executives are applications
designed to run a series of tests
quickly and consistently in a pre-
defined order. Of the 93 percent
of test-system developers who use
test equipment, approximately
37 percent use a commercial test
executive for test sequencing, while
the remaining 56 percent use a
“homegrown” test executive.

•	Planning for software reuse.
Designing for code reuse means
you and your co-workers won’t
have to re-create your software
components every time you start a
new project. Instead, you can build
up a company knowledge base
of best ideas, best practices, and
software components. This knowl-
edge base will bring uniformity
and consistency to your company’s
product testing functions.

This chapter will provide you with a
solid overview of the test system soft-
ware architecture as outlined above.
For more in-depth information, refer
to the sources listed throughout this
document. Now, let’s get started with
the first phase of choosing your test-
system software architecture—gath-
ering and documenting your software
requirements.

Gather
manufacturing
requirements

Data
collection

Open standards?

Graphical or
textual?

Test executive?

Design operator interface

Prepare data collection strategy

Design for reuse

Performance

Software
Requirements

Specifiaction (SRS)

Test
specification

User interface

Time

Gather
R & D

requirements

Finalize
test system
hardware

Figure 4.1. Test-system software development process overview

affects the hardware that connects
the PC to the instrument as well
as the software and drivers that
control the instrument.

•	Collecting and storing test data.
Data collection is the science of
obtaining, moving and formatting
data. The integrity of your test
system depends on obtaining the
right data at the right time.

•	Designing the user interface. One of
the most important (and easily
overlooked) aspects of test systems
is the graphical user interface
(GUI). This is what the test engi-
neers, operators and technicians
see when they interact with your
software.

•	Choosing the development environ-
ment. The software environment
and tools you choose will have a
significant impact on the overall
cost of your test system. When
choosing your software environ-
ment, consider more than just the
purchase price of the software.
Also, consider how easy it is to
learn and use the software, how
hard it is to connect to other
languages, devices or enterprise
applications, as well as support

36 4. Choosing Your Test-System Software Architecture

Gathering and documenting
software requirements
The Software Requirements
Specifications (SRS)� is a prioritized
list of required test-system software
capabilities and information on
the software’s external interfaces,
performance requirements, system
attributes and design constraints.
Typically, some requirements “musts”
are essential and others “wants” can
be traded for time (e.g., to meet a
project deadline).

The IEEE identifies the following
areas you should address in your
SRS:�

•	 Functionality. What is the software
supposed to do?

�	 May be referred to as an ERS or
simply as “the requirements.”

�	 For more information, refer to
the IEEE Standard 830-1998
“Recommended Practice for Software
Requirements Specifications” and the
IEEE Standard 1233-1998 “Guide for
Developing of System Requirements
Specifications” located on the IEEE
web site (http://standards.ieee.org).

•	 External interfaces. How does the
software interact with people, the
system’s hardware, other hardware
and other software?

•	 Performance. What is the speed,
availability, response time and
recovery time of various software
functions?

•	 Attributes. What are the portability,
correctness, maintainability and
security considerations?

•	 Design constraints. What industry
standards need to be followed?
Does a specific language need to be
used? What about internal policies
for database integrity, resource
limits and operating environments?

Ideally, the SRS will describe WHAT
you need the software to do, not
HOW the software will do it. In other
words, you can look at the software
as a “black box” that controls a set of
external resources such as instru-
ments, a computer monitor and other
components (see Figure 4.2).

The SRS will include implementation
details only if those requirements
are imposed externally. For example,
your company may require that
a portion of the system be imple-
mented in a specific programming
language.

A good SRS answers the following
questions:

1.	 What measurements and tests are
required to exercise the device
under test (DUT)?

2.	 How will the measurements
and tests be performed given
the available instruments and
devices?

3.	 What types of data need to be
collected?

4.	 Where will the data be stored?

5.	 What are the external constraints
(e.g., performance and time
specifications)?

6.	 How will the operators, test engi-
neers and technicians interact
with the software?

Within the product development
lifecycle, the R&D department should
provide a formal list of testing
requirements to the test-develop-
ment department. The System
Requirements Specifications, also
referred to as a Project Requirements
Specification, refers to the system
as a whole and therefore is different
from the Software Requirements
Specifications. Furthermore, the
manufacturing department will have
its own requirements, such as safety
standards. It is the combination of
R&D and manufacturing specifica-
tions that determine the hardware
requirements of a test system and
provide the basis for the Software
Requirements Specifications.

It’s important to note that trying
to build or design software while
the test system hardware is still in
a state of flux typically results in
additional software re-work and re-
design. This is one of the challenges
you will face in the real world of
test-system development!

Results
database

Instruments Operator
interface

Other
resources

SRS

Test system hardware

Figure 4.2. Scope of the SRS

37
www.agilent.com/find/open

Figure 4.3 provides an SRS template
and a requirements example. As
shown in the template, SRS is more
than requirements. Document within
the SRS what the software is meant
to do and provide definitions for
the terms you are using. Document
the external constraints imposed
upon you and the external resources
you have available. Describe your
users in detail and the modes of
operation for each user class. Finally,
include appendices and an index.
Once you’ve completed these tasks,
you’re ready to describe the specific
requirements. The requirements
example (user interface of a test
sequencer) is a snippet from a larger
set of requirements divided by func-
tion. The words “MUST” and “HIGH
WANT” are a way of ranking the rela-
tive importance of the requirements.
You can break up requirements into
more manageable hierarchies based
on function, program mode, or some
other classification system that will
make the requirements section easier
to navigate.

The IEEE says that requirements
must be correct, unambiguous,
complete, consistent, ranked for
importance, verifiable, modifiable
and traceable. You can see that the
above format meets a number of
those goals, but some additional
practices are necessary to meet them
all. If you refer to requirements in
more than one place, you will need to
cross-reference them using a unique
number (3.4.3, for example) so that
if a requirement changes, you will
know where to fix it elsewhere in the
document.

Each written requirement needs to
be verifiable and unambiguous to
ensure the test program behaves
as expected. As you write the SRS,
refer to the System Requirements
Specifications whenever possible.
This is called backward-traceability,
helping to explain why certain
requirements are included and not
just an arbitrary restriction.

The SRS must describe what testing
resources (instruments) are required
(e.g., the type of voltmeter, switches,
computer monitor, etc.) and whether
any factory resources are needed
(e.g., a results database). In addition,
you need to define within the SRS
the data collection method, user
interface requirements, performance

constraints and, most importantly,
the specific DUT test requirements.
For example, if you need to perform
a specific resistance measurement
and you know you have an Agilent
34401A multimeter, the SRS would
specify a single-sample 4-wire
measurement including a description
of the proper switching path, thus
ensuring access to the pins on the
DUT.

In order to accurately describe the
test-system software user interface
requirements, you should develop
specific use cases for the different
users of the test system (e.g., opera-
tors, test engineers, managers, etc.).
Use cases are scenarios describing
the users’ interactions with the
software. Taking the time to develop
well-written requirements specifica-
tions up front will save you time later
in the development process. The SRS
process forces you to think about
the scope of your project and helps
to identify poorly understood areas
of your software. This means you
will spend less time re-writing and
re-testing software due to confusion
over what was truly required in the
first place. A well-written SRS will
help ensure that the project portion
you want to contract out or redis-
tribute will not require re-work on
your part.

Figure4.3. SRS template and requirements

Example SRS template
Table of contents
1 Introduction
	 1.1 Purpose
	 1.2 Scope
	 1.3 Definitions, acronyms and

abbreviations
	 1.4 References
	 1.5 Overview
2 Overall description
	 2.1 Product perspective
	 2.2 Product functions
	 2.3 User characteristics
	 2.4 Constraints
	 2.5 Assumptions and dependencies
3 Specific requirements
Appendices
Index

Example requirements
3.4	 User interface functionality:
3.4.1	 (MUST) The UI allows the user to create, modify, run and

debug sequences.
3.4.2	 (MUST) The UI allows users to view and export, load and store

sequence run result data.
3.4.3	 (MUST) The UI represents sequences in a hierarchical

manner, which may be expanded or collapsed to view or
hide internal details of the sequence.

3.4.4	 (HIGH WANT) The UI can represent shared (used several places)
sequences separate from the main sequence hierarchy.

3.4.5	 (HIGH WANT) The UI will use graphical icons to denote
variations in state of sequence items.

38 4. Choosing Your Test-System Software Architecture

Programming and control-
ling your instruments
When designing your test-system
architecture, you need to think about
how your PC will communicate with
different instruments. The two most
important factors are deciding how
to physically connect the PC to other
instruments and deciding what
software will you use to control and
communicate with other instru-
ments. Refer to Chapter 2 for advice
on choosing an I/O option and to
Chapter 3 for advice on choosing and
using drivers and other instrument
communication software.

Collecting and storing the
test data
Data collection is the science of
identifying, collecting, formatting
and distributing important informa-
tion about the behavior of your test
system and the devices it tests (see
Figure 4.4). Quality data collection
and analysis is the foundation for
controlling your manufacturing and
test processes—the ultimate goal of a
manufacturing test engineer. Quality
data also can be used to support
many functions throughout your
organization and support products
throughout their development
lifecycle.

Communicating results of a test
sequence is one use of test data. Test
data also may be used to ensure regu-
latory standards are met, document
performance standards, or provide
traceability for the DUT. Given these
applications and others, you may
want to collect more data than your
R&D or manufacturing colleagues
request.

In addition to external data require-
ments, recorded data can be used
to debug a test sequence in ways
debugging runs cannot. Debugging
means slowing down and subtly
changing the behavior of your test
sequence. This means a defect
you see in a normal run may not
show up in a debugging run (and
vice-versa). One way to reduce the
burden of diagnosing test software,
and its associated DUT, is to always
collect the data you need to debug a
problem. You will need to balance the
benefits of collecting extra data with
the costs in performance and time for
your test software.

Just as important as the standard
types of data (e.g., test limits,
measured values and pass-fail
judgments) are the contextual
data. Contextual data are used to
communicate everything relevant to
the DUT’s testing environment. This
includes the test-system configu-
ration, software version, driver
versions and other factors.

The more variables you record, the
more correlation points you and
your colleagues can analyze during

debug. For example, in one particular
manufacturing test situation, a DUT
would fail in the afternoon. The
test engineer was able to correlate
the time of day to the time of the
failure and use that information to
look more closely at a photoelectric
component of the DUT. It turned
out that sunlight would strike that
component directly at certain times
of the day, causing the component
to charge a capacitor and cause the
test to fail. A DUT may fail due to the
temperature variations or relative
humidity. Capturing contextual infor-
mation and measurement conditions
can save days of effort.

You want to ensure the writing or
formatting of your data does not
affect the behavior of your test
system. Today’s PCs use a variety of
caching techniques that can dramati-
cally affect how long it takes for a
given file or network I/O command.
If the time it takes to cache your data
varies between each test run, you will
get inconsistent test results. For that
reason, it’s a good idea to keep your
data in RAM until the end of your
DUT testing and then do your format-
ting and data transmission.

Response
voltage limits

[12,100]

Loaded battery
response

(volts)

Model 320a
SN:00010145

12:03 pm
Dec. 14, 2004 Fail!

XML
data file

Results
database

Report ticket
printer

Operator
interface

Fail!

Data

Figure 4.4. Overview of the data collection process

39
www.agilent.com/find/open

Data is useless unless it can be
understood. Good data is

•	 Identifiable. Information identifies
the circumstances surrounding the
data and the condition in which it
was collected.

•	 Searchable. The data posses
regular structure or fields that are
uniquely identifiable, making it
easy for a script or software tool
to identify and compare across
multiple records or datasets.

•	 Transformable. Raw data must be
interpreted and displayed (insight
is the goal). This means that
software algorithms can perform
operations on some or all of the
fields of your data and create a
new data format or data visualiza-
tion based on your original data.

•	 Permanent. Data must remain
available and comprehensible.
Relational databases tend to be the
best choice for long-term storage of
data as these databases are highly
searchable. If your company does
not already have a database for

manufacturing information, you
may want to consider a database
solution. This decision depends
on your company’s data storage
policies, practices and budget.�

Table 4.1 lists some common data file
formats and relevant characteristics.

Binary formats have the fundamental
issue of not being self-describing. In
addition, you need to acquire a sepa-
rate software application to interpret
the data. Depending on the software
application you use for interpreting
the data, you also may be limited
in the number of transformation
functions.

Text files are hard to search and trans-
form, and are not very identifiable.
Since plain text files do not have
regular fields, a text search for the
number 12, for example, could return
the hour twelve, the limit value 12, or
the DMM measurement 12.

�	 Tufte, Edward R. “The Visual Display
of Quantitative Information.”
Graphics Press, 2001.

Comma-separated value (dot-csv) text
formats are a good choice since they
are easy to import into Microsoft
Excel. With Microsoft Excel, it’s easy
to make a table of results with the
rows containing the results and each
column containing a unique descrip-
tion. Another advantage is most data
analysis software can easily read this
format. The downside of this format
is that it cannot store hierarchical
data or easily parse data sets. You
must decide up front as to the
number and types of columns, with
each column containing one unique
data field.

XML� is self-describing, very trans-
formable, and has excellent search
characteristics. There is an XML
language called Extensible Stylesheet
Transforms (XSLT) that can apply
arbitrary algorithms to convert your
XML data into new XML formats,
HTML, or simple text formats.� A
number of data analysis programs,
including Microsoft Excel 2003,
can import XML data.� If you fail to
output your data in the right XML
format for an analysis tool, you
can write a relatively small XSLT
that will convert all your XML data
into the desired format. XSLT also
provides a powerful search feature,
making it much easier to identify
data values or data structures.

�	 Extensible Markup Language:
http://w3.org/xml.

�	 Holzner, Steve. “Inside XML.” New
Riders, 2000.

�	 XML in Microsoft Office: http://www.
microsoft.com/ presspass/press/2002/
Oct02/10-25XMLArchitectMA.asp.

Table 4.1. File data format comparisons

Binary Unformatted
text

Comma-separated
variables (.csv)

XML (Extensible
Markup Language)

Identifiable Only with
special tools

Only for small
data sets

Needs good column
format design

No major issues

Searchable Only with
special tools

Difficult and
error-prone

No major issues Excellent, but
requires XML
expertise

Transformable Only with
special tools

Difficult and
error-prone

No major issues Excellent, but
requires XML
expertise

Permanent Only with
special tools

Only for small
data sets

No major issues No major issues

Example:
spreadsheet
analysis

Only with
special tools

Not importable Supported by
Excel, others

Excel 2003 format
available

40 4. Choosing Your Test-System Software Architecture

The manufacturing test industry has
already begun adopting XML. Some
test executive applications support
XML data logging. There is a stan-
dard called IPC 2547� that defines an
XML format for communication of
manufacturing test data.

Figure 4.5 is an example of a
standard test run in XML format.
You will still want to know the test
sequence ID, the variant of the test,
if the test limits are modifiable on
the “PowerTest” and the hardware
configuration of the test system.

If this were a .csv file, we would have
to create a field for every record to
answer those questions. Using XML,
we can insert a record type called
<TestSequence ID=”32”> and fully
describe the current test sequence
in that record. We can then add an
XML attribute called “IDREF” to refer
to that test sequence record in our
<TestRun> records.

In summary, the data format you
choose will have a large impact on its
value over time. You need to consider
how easy or difficult it will be for
someone else to read and interpret
the data once you are no longer
involved in the project.

�	 IPC 2547: http://webstds.ipc.
org/2547/2547.htm

Designing the user
interface
When a user displays generated by
a test system should vary according
to the class of user, such as operator,
test engineer, technician, or service
and calibration engineer. A well-
written SRS defines the commands
and/or menu selections available
to each user class. You will want to
provide each user class with only the
capabilities and information those
people need to do their jobs. The
more choices you provide, the greater
the possibility for confusion and
mistakes.

To ensure security, you can create
a unique login for each of the users.
Each user login should be linked to
the appropriate class.

You can verify that your GUI meets
the users’ needs with a methodology
called “User-Centered Design,” or
UCD, which consists of prototyping
and storyboarding.�,� In general, a
test system’s GUI should be able to

�	 Vredenburg, Karel, et al, “User-
Centered Design, an Integrated
Approach.” Prentice Hall PTR, 2002.

�	 Norman, Donald A., “The Design of
Everyday Things.” Basic Books, 2002.

1.	 Customize its behavior based on
the user class.

2.	 Provide or allow input of detailed
information about the DUT.

3.	 Provide information about the
state of the system.

4.	 Provide operations for controlling
the system’s state and potentially
its configuration.

5.	 Display the DUT testing results.

For an operator, the interface you
design should always show the state
of the test system (e.g., running
a test, paused or stopped). For
example, you could use a large color-
coded graphic on the PC monitor in
conjunction with lights mounted on
the test system. The operator also
will need a way to control the state
of the test system as well as a way to
input DUT information (unless this
is done automatically via a bar code
scanner).

As a general rule, test program
should have the following features:

1.	 Commands for starting and stop-
ping the test sequence.

2.	 Commands for sending test
results to various kinds of
printers (defect report ticket,
etc.).

Figure 4.5. XML report file

41
www.agilent.com/find/open

3.	 Control of the behavior of the
test sequence (i.e., picking a DUT
variant from a drop-down list).

4.	 A way to display a more detailed
description of test results. The
quality of a test results message
can help in providing a quick
diagnosis of a user error or a
recurring hardware problem and
may ultimately eliminate the need
for a test engineer to visit the
factory floor.

The user interface shown in Figure
4.6 was designed for an operator in
a low-to-mid-mix/high-volume test
application. The operator starts by
logging into the test system, selecting
the name and version of the test plan
and entering the DUT information.
The test status portion of the display
is a little less prominent and visible
than recommended for a manufac-
turing test environment, which may
necessitate the addition of test status
lights to the test system.

The system message field displays
the test result information as well
as instructs the user on what to do
next. To help the test engineer during
the debugging process, the system
message field also can display error
messages.

The user interface shown in Figure
4.7 was designed for a high-mix, very
low volume testing situation (e.g., cell
phone base stations). It also can be
used for test sequence development
or debugging. The class of user for
this interface is highly skilled and
possesses detailed knowledge of the
purpose and function of the available
tests, the DUT, and the test system
configuration. An unskilled test
operator would not be able to use
this interface effectively.

The two GUIs were created with
the same test software, though they
vary considerably in complexity.
The operator GUI in Figure 4.6 hides
unnecessary choices and information
critical to the software developer.

Figure 4.6. Low-mix, high-volume user interface

Figure 4.7. Software developer’s interface

42 4. Choosing Your Test-System Software Architecture

Choosing the development
environment
The next step in choosing your test
system software architecture is
to select a software development
environment. The software environ-
ment and tools you choose will have
a significant impact on the overall
cost of your test system. When
choosing your software environment,
consider more than just the purchase
price of the software. You need to
consider how easy it is to learn and
use the software, how hard it is to
connect to other languages, devices
or enterprise applications, as well as
support and maintenance costs. Over
the life of a test system, just software
support and maintenance costs can
exceed hardware costs.

You have a number of options when
it comes to software development
environments, from writing every-
thing yourself in a language such
as C, C++, C#, VB, VB .NET, Agilent
VEE, MATLAB or LabVIEW, to using
an off-the-shelf test executive with
pre-written third party tests. The
software environment you choose
needs to accomplish two goals:
1) meeting your time-to-first test
requirements and 2) meeting your
test-throughput requirements. How
fast can you get your test system up
and running, and how can you get
the greatest throughput?

Software development environments
can be grouped into two categories:
graphical or textual. Graphical
environments, such as Agilent’s VEE
Pro 7.5 (see Figure 4.8) or LabVIEW,
are considered easy for engineers
to learn and use, largely because of
engineers comfort with the schematic

environment. In addition, it is easier
to modify small to medium size
graphical programs versus textual
programming languages. Historically,
textual programming languages ran
faster in the manufacturing environ-
ment and yielded higher throughput.
Today, there is less difference
between the runtime speeds of a
graphical environment and a textual
environment..

Even though graphical environ-
ments are easier to use than textual
environments, textual environments
are used more commonly in manu-
facturing test systems. Only about 22
percent of the half million-plus users
who write code for test and measure-
ment equipment use a graphical
programming language.

Graphical or textual
programming?
Before you can decide on which
development environment is best for
your application, it’s important to
understand the use model of each in
greater detail.

Graphical programming is accomplished
by manipulating images, called icons
or objects, and the lines that connect
these images. The images represent
pre-made commands while the lines
represent the program flow, control
points, and /or how data are gener-
ated and consumed. The icons and
interconnecting lines are contained
within the integrated development
environment (e.g., the software
program).

Figure 4.8. Agilent VEE Pro graphical programming environment

43
www.agilent.com/find/open

Many graphical programming
environments provide the ability
to create compiled or packaged
programs that do not need the
programming environment to run.
There are several graphical program-
ming environments targeted at test
and measurement engineers. These
programs tend to have extensive
I/O and instrument drivers, and
T&M-specific math and graphing
operations.

Some of the advantages of graphical
programming languages over textual
languages are as follows:

1.	 No complex syntax. The program
instructions, typically presented
as a group of icons connected
by lines, are more immediately
understandable.

2.	 Easier visualization of the paths of
execution and interaction. Multiple
concurrent activities rely on
what is called a data-flow model,
where a command needs to have
all its data available before it will
execute. This is easier than using
multithreaded programming tech-
niques in textual programming
languages such as C++ or Java.

3.	 Real-life metaphors. The icons
representing the commands can
use metaphors (images) that
represent real-world equivalents
of the actions carried out by the
icon. Most test engineers find
graphical programming to be
more intuitive and user-friendly
than textual programming.

4.	 Rapid prototyping. With the
intuitive nature of a graphical
programming language, it can
be easier to quickly build a
prototype of your system. The
prototyping capability is less

useful when dealing with a large
test system, but prototyping can
aid development of systems of
any size.10

5.	 Ability to share and learn existing
programs easily. Using real-life
metaphors as visual cues can
make it easier to share and learn
existing programs and increase
productivity.11

10	 Rahman, Jamal and Lothar, Wenzel,
“The Applicability of Visual
Programming to Large Real-World
Applications,” 1995, http://www.
computer.org/conferences/vl95/html-
papers/wenzel/paper.html.

11	 Blackwell, Alan F. and Green,
T.R.G., “Does Metaphor Increase
Visual Language Usability?,” IEEE
Symposium on Visual Languages
VL’99, 1999, pp. 246-253.

Textual programming languages
use special words and syntax to
represent the program’s operations
and flow. Most, but not all textual
programming languages are based
on open standards. This means you
will have a choice of vendors when it
comes to your programming environ-
ment and software tools. Textual
programming languages have a much
larger set of third-party drivers,
tools, and add-ins because they are
based on open standards and are
more widely used than graphical
languages. This benefits the test
engineer.

Some of the advantages of textual
programming languages over graph-
ical languages are as follows:

1.	 Ability to handle large programs.
Textual programming languages
are better suited for creating
larger, more comprehensive
programs.

Agilent VEE Pro and T&M Programmers Toolkit
Agilent VEE Pro
•	 Description: Easy to use, powerful graphical instrument programming

environment
•	 Applications: Data acquisition, design, low volume manufacturing test
•	 Purpose: Graphical program creation to acquire and analyze instrument data
•	 Features: Easy test-system control, sequencing, support of Microsoft .NET

framework, MATLAB® analysis and visualization, full support of ActiveX

Agilent T&M Programmers Toolkit
•	 Description: Test code development (in VB .NET, C++ or C#) integrated into Visual

Studio .NET
•	 Applications: Design characterization, design validation, manufacturing
•	 Purpose: Writing complex programs with a variety of drivers in a PC standard

environment
•	 Features: Instrument I/O and communication, test code debug, data collection,

display and analysis, support for IVI-C, IVI-COM, VXIplug&play drivers

44 4. Choosing Your Test-System Software Architecture

2.	 Simpler navigation of large programs.
For larger programs, textual
programming languages are
easier to navigate and compre-
hend. A person can observe only
about 50 graphical objects at
a time before the information
becomes too complex or too small
to see.12 If a user is forced to move
around in a program to see all its
objects, he or she can lose track
of the control and data lines and
find it difficult to understand
the overall flow of the program.
With that said, you can improve
the understandability of large
graphical programs by breaking
up the program’s large operations
into smaller suboperations. This
is called functional decomposi-
tion and is achieved by putting a
series of commands into a “black
box”. You then send commands to
the functional block and receive
its output as appropriate. Make
sure the graphical program you
use supports this functional
decomposition13 if you plan on
working with larger programs in a
graphical environment.

3.	 Higher system throughput. The
faster runtime speeds of a
textual programming language
can improve overall system
throughput. However, be aware
that the time spent during instru-
ment operations will often have
a greater impact on throughput
than the choice of programming
environment. For example, time
lost through inefficient signal
switching between the test system
and the DUT can far outweigh
any time savings earned through
choice of programming language.

12	 Begel, Andrew, “LogoBlocks: A
Graphical Programming Language
for Interacting with the World,” 1996,
http://www.cs.berkeley.edu/~abegel/
mit/begel-aup.pdf.

13	 Glinert, E. P., “Visual Programming
Environments,” IEEE Computer
Society Press, 1990.

4.	 Greater choice of development
environments. For example, there
are few graphical programming
languages that have develop-
ment environments provided by
multiple vendors. This means that
today’s graphical languages are
less likely to have the advantages
created by competition between
vendors.

Graphical programming tends to
be easier to learn and comprehend
while textual programming is more
pervasive and open. Table 4.2
summarizes the differences between
the two programming environments.

Working with open
standards
In addition to choosing between
graphical and textual programming,
you need to consider whether the
environment you choose will be
based on industry standards or
propriety, vendor specific technology.
C++, Visual Basic, and C# are all
examples of industry standard
programming environments. Agilent
VEE Pro and NI LabVIEW are
examples of proprietary development
environments although Agilent VEE
Pro 7.0 does allow for access into
industry standard technologies such
as .NET.

Choosing between proprietary
and open standards
Several factors to consider when
deciding between an industry stan-
dard and a proprietary development
environment are 1) cost, 2) industry
support, 3) upgradeability, and 4)
extensibility.

Development environments for open
standard programming languages
have a greater feature set and are
less expensive than their proprietary
counterparts. Simply stated, an
open standard environment tends to
create greater competition, which in
turn tends to drive down prices and
create innovation.

Open-standard languages generate a
lot of interest from both software tool
vendors and open-source developers.
Both of these groups spend consider-
able time understanding the needs of
the test-system programmer and, as a
result, develop both free and for-pay
tools and applications to meet those
needs. A good example is the tremen-
dous number of C and C++ libraries
available on the market, both from
vendors and from end-users. These
libraries save development time and
money given that it is faster and less
expensive for a developer to buy the
domain-specific software (such as
mathematical analysis libraries) than
create it from scratch.

Table 4.2. Graphical versus textual programming

Graphical Textual
Free and open Few open standards, less

extensible
Dominated by open standards,
very extensible

Rapid prototyping Excellent T&M prototyping
features

Some code wizards, (T&M
Programmers Toolkit, for
example) but slower

T&M support Several graphical environments
targeted at T&M, many drivers

Several T&M-specific 3rd-party
tools available, many drivers

3rd-party tools Hundreds Tens of thousands
Learnable and
shareable

Easy to pick up and use programs Only small or very-well-designed
programs are easy to share

45
www.agilent.com/find/open

Open standard environments also
have a time-to-market advantage,
as most proprietary environments
cannot quickly take advantage of
emerging technologies. Emerging
programming technologies are devel-
oped with the most common open
standard programming languages in
mind. It takes longer for a vendor to
release a new version of proprietary
software that takes advantage of new
technology.

The .NET framework
The .NET framework is an open,
multi-platform, multi-vendor set of
software technologies for program-
ming computers. The C# language
has been submitted to a standards
body as an open language. The
underlying .NET “Common Language
Infrastructure” technology, also
an open standard, is available in
multiple operating systems, including
Microsoft’s Windows and Linux.

The .NET technology has excellent
support and applicability to both
web development and PC software
development environments. The
.NET technology has many of the
advantages of Java language without
many of Java’s drawbacks. For
example, the .NET technology elimi-
nates programmer memory leaks,
makes software deployment easier,
and provides a rich Application
Programming Interface (API) for
system and GUI development. The
.NET technology is fully compiled via
a Just-In-Time (JIT) compiler. The JIT
compiler takes the operating system
(OS) and platform independent code
and creates optimized, machine-level
code for the target platform.

While there is some additional
overhead required to load the .NET
framework runtime, programs
written with .NET are comparable, or
run faster, than their C/C++ counter-
parts.14 The reason programs can run
faster in the .NET environment is due
to the inefficiencies inherent in the
linker operation of older languages.15

A survey of programmers and a
number of case studies have shown
significant improvements in produc-
tivity via the .NET environment over
the programmers’ old environment.16

The .NET Framework (the collection
of API services and helper code used
by the .NET languages) is not the
same thing as Visual Studio .NET.
Visual Studio .NET is Microsoft’s
development programming environ-

14	 Wilson, Matthew, “Does C# Measure
Up?” Windows Developer, Volume 2,
Issue 13, Fall 2003, http://www.wd-
mag.com/wdn/webextra/2003/0313

15	 Johnson, Mark S. and Miller
Terrence C., “Effectiveness of a
machine-level, global optimizer,”
1986, http://portal.acm.org/citation.
cfm?id=13321&dl=ACM&coll=portal

16	 http://www.microsoft.com/net/
casestudies

ment with support for the .NET
technologies. As shown in Figure 4.9,
there are multiple .NET development
environments and programming
languages available from a number of
different vendors and supported on
multiple platforms.

The best-known .NET languages are
C# and Visual Basic (VB) .NET. C#
is a lot like Java in structure and
features, but its syntax is meant
to be an evolution of C++. A C++
programmer familiar with object
orientation and exception handling
could easily move to the C# program-
ming environment.

VB .NET is an upgrade to Visual
Basic 6. Engineers with existing VB
6 applications must use an upgrade
wizard to migrate to VB .NET. Once
the upgrade process is complete,
access to .NET applications and
the additional power and flexibility
provided by .NET can be achieved.

Microsoft’s C++ language also
has been enhanced to include a
new version called Managed C++.
Managed C++ makes it easier to
execute calls within the .NET soft-
ware. Microsoft provides the original
unmanaged C++ in Visual Studio
.NET as well.

 Open standards

C/C++ Managed
C++

.NET
SDK

.NET class
library API

C.L.I.,
common language

infrastructure

Visual designers,
editor, debugger

.NET

Visual Studio .NET

C#

VB .NET, ASP .NET

Figure 4.9. Programming languages within the .NET framework

46 4. Choosing Your Test-System Software Architecture

One significant advantage of .NET
over older programming technologies
is its extensibility. Microsoft engi-
neered .NET so that it avoids a lot
of the DLL installation frustrations
Windows programmers experienced
in the past. There are already a
large number of third-party tools
for .NET. Many of these third-party
controls (i.e., advanced graphing
visual controls) are useful to test-
system programmers. Additionally,
several test and measurement
vendors, including Agilent
Technologies, National Instruments,
and Measurement Computing, have
released .NET-compatible tools. For
a complete list of released .NET-
compatible tools, refer to Microsoft’s
.NET partner web site at www.
vsippartners.com.

Agilent Technologies’ first add-in
for Visual Studio .NET is called the
Test and Measurement Programmers
Toolkit (see the sidebar on page
43). The T&M Programmers Toolkit
provides I/O tools, graphing and
mathematical libraries, T&M specific
help and example generators, and
.NET wrappers for instrument
drivers and other software. The T&M
Programmers Toolkit is fully inte-
grated into the Visual Studio envi-
ronment. For more information on
Agilent’s solutions, go to http://www.
agilent.com/find/toolkit or http://www.
agilent.com/find/iolib. To download
.NET-related I/O source files, which
also work with the Agilent I/O
Libraries, go to the Agilent Developer
Network (ADN) web site at http://
www.agilent.com/find/adn.

Developing a test sequence
In a survey of more than 2,500 test
and measurement equipment users,
93 percent of the respondents said
they use multiple test instruments
and /or are connecting their test
instruments to a PC. Of that, 37
percent said they use a commercial
test executive for test sequencing.
The remaining 56 percent of these
respondents use internal or “home
grown” software for test sequencing.

A test executive is a software
application designed to run a series
of tests quickly and consistently in
a predefined sequence. If any of the
tests within the test sequence fail,
then the DUT fails. Over the years,
test executives have improved consid-
erably both in terms of flexibility
and capabilities. First-generation
test executives were language-
specific and not powerful enough
for a mission critical manufacturing
environment. Second-generation
test executives, such as Agilent’s
TxSL and NI’s TestStand are more
powerful but more expensive. They
also lack the flexibility required for a
low-volume, high-mix manufacturing
environment.

Each of the tests within the test
sequence is a separate module.
Commercial test executives come
with a standard set of test modules

and allow the user to create addi-
tional test modules from scratch
(as well as customize existing test
modules). Test executives control
the data to and from the test module
and, after collecting and analyzing
all of the data, determine if the DUT
passed or failed.

One reason for using a test executive
is it provides a structured framework
for manufacturing test systems. Test
executives work best in medium- to
low-mix, and medium- to high-volume
manufacturing test environments.

Test executives are written so that
sequence design, individual test
design, and test limits and configu-
ration management are treated as
separate tasks. Keeping the three
tasks separate results in greater
flexibility, higher quality, and an
increased opportunity for code reuse.
It is the test executive that provides
the infrastructure and helper
services required to connect each of
the separate tasks into a complete
program.

One of the most important features of
a test executive is its test sequencer.
As shown on the left side of Figure
4.10, the test sequencer is a sequence
of tests that can be manipulated in
design mode. Various test executives
provide different levels of flexibility
in this sequence, such as “test
looping.”

Figure 4.10. The test executive test sequencer

47
www.agilent.com/find/open

At a minimum, test executives should
perform the following tasks.

1.	 Capture the results (and any
extra data) using their own data
collection model.

2.	 Keep track of the test limits
and test setup data, passing the
setups to the tests at execution
time.

3.	 Provide limit checkers.

4.	 Provide run-time analysis of
the test results (pass or fail
reporting).

Additionally, test executives may
include a software repository for
maintaining the test modules (and
for encouraging the reuse of tests).
With a software repository, the test
engineer can look for a specific test
by doing a search within the test
module repository. If all the engi-
neers in a company settle on one test
executive, it then becomes possible to
share test modules between different
product and manufacturing groups.

Test executives may use a switching
model that makes it possible to
map the physical layout of the test
system’s control and data lines (and
any switch boxes) to the DUT and
instrument’s I/O pins. This allows
the test engineer to think in terms of
logical connections between instru-
ments and the DUT, rather than
worry about how the system is wired.

Finally, some test executives include
tools for building the operator
interface. While this feature tends to
be less flexible than using one of the
development environments discussed
earlier, it does provide a fast and
simple alternative.

Planning for software reuse
Aside from the use of standard
libraries and operating system
API’s, most software reuse tends
to be opportunistic. A typical reuse
scenario is when a programmer
encounters a problem and remem-
bers a similar problem handled
by a co-worker. The programmer
searches through the old source code
of previous programs to find the
desired code. If the code is found,
the programmer decides how and
if the software can be adapted to
the current test situation. After
modifications are made, the software
must then to be re-verified. Most of
the time, adapting software in these
situations is faster than creating
software from scratch.

The scenario above could have been
improved with a systematic software
reuse approach. The advantages
of a systematic approach is in the
reduced time it takes to search, find,
verify, and adapt test code for new
test situations. A systematic reuse
approach requires following specific
coding and architectural styles, as
well as adherence to standardized
company policies and practices.

Discussing all of the considerations
for implementing a complete compa-
nywide systematic reuse program
is outside the scope of this chapter,
but there are decisions you can make
to help achieve a more systematic
approach for yourself, your team,
and even your company. Reuse
considerations should begin after
you’ve gathered system requirements
and before you begin the software
development.

Professional test executive
or custom software?
How do you decide if you should
create your own test executive or buy
an off-the- shelf version? Here are a
few factors you will need to consider.

1.	 The first thing to look at is
whether you need a test executive
at all. If you don’t have a relatively
fixed sequence of tests, test
executives are probably not right
for you.

2.	 If your company has an internal
test executive, or more likely,
several internal test executives,
you’ll need to investigate their
quality, features, availability of
support, and the collection of
tests or other auxiliary software
available for them.

3. 	If you find a reasonable choice, it
doesn’t hurt to look at the cost of
porting existing code over to use a
professional test executive.

4. 	You may decide to use a profes-
sional test executive because of
its support, quality or features.

5. A professional test executive most
likely will have better outsourcing
characteristics. Third-party soft-
ware contractors and consultants
may already have experience with
such a test executive, and third-
party libraries may be available.

6. 	A professional test executive
should include a complete set of
documentation.

If you choose to go with a profes-
sional test executive, make sure
it’s from a company that provides
high-quality service and support.

48 4. Choosing Your Test-System Software Architecture

The design reuse process
The first step in the design reuse
process is to complete a domain
analysis. This is accomplished by 1)
systematically analyzing the func-
tions and parts of your software
domain, and 2) using this informa-
tion to develop a software architec-
ture with well-defined component
types and algorithms.

Next, you will want to look for
natural boundaries in your software.
One software design practice of
finding and documenting the natural
boundaries is known as Design
Patterns.17 To find the natural bound-
aries, look to those areas where one
type of activity or data set links with
another type of activity or data set.
These areas can then be grouped into
separate modules and documented
accordingly. Once documented,
the same type modules can then be
swapped for one another.

Once you have identified, collected
and documented your modules,
components and /or individual parts,
you will need to thoroughly test them
before they go into the repository (or
are passed on to your co-workers).
This will save you and your co-
workers from problems later in the
process.

Finally, reusable components are
reusable only if your co-workers
know they exist. You need a reposi-
tory (such as a relational database)
for your modules where anyone in
your team, division, or company (if
appropriate) can browse and search
for them based on what the compo-
nents are and what they do.

17	 Shalloway, Alan and Trott, James
R., “Design Patterns Explained: A
New Perspective on Object-Oriented
Design,” Addison-Wesley Pub Co,
2001.

A design reuse example

A good model for design reuse of
individual test modules is the test
executive—here’s why.

1.	 Some test executives break test
software up into swappable tests,
sequencers, limit checkers, test
sequence and test limit data.18

2.	 Test executives rely on the
concept of modules. For example,
you can have a module that
provides the ability to perform
a single pass or fail judgment,
including the sequencer data
type, the sequence execution
operation, and the test types.

3.	 Test executives allow reuse of
tests in different test sequences
with no change to the test code.
The sequencer provides the
necessary data to the tests to
customize their operation for the
current test sequence.

4.	 Test executives keep the tests in
separate modules or files from
the test sequencer or test execu-
tive application. This allows you
to easily swap tests in and out
without recompilation.

5.	 Some test executives allow you
to write your own custom limits
checkers or sequencers.

All of these modules are able to
interoperate because test execu-
tives use well-defined application
programming interfaces (APIs) for
each module. The modules are placed
on natural boundaries between
different types of data and functions
within the test executives.

18	 This is a good example of a design
pattern specific to the test and
measurement domain.

You can achieve similar reuse success
in your own code with good archi-
tecture influenced by the natural
boundaries of your software’s func-
tions, types and data. To accomplish
this, put information that changes
frequently, such as the limits for a
test, into a Data File. Put less flexible
elements, such as a test class, into
Types or “classes.” Functions, or
“procedures,” should be reserved for
the least flexible elements.

Design reuse and .NET
While the definitions of the bound-
aries of your software domain are
not specifically influenced by the
programming language or software
environment, some environments
are better than others in helping to
keep your software modular and
swappable.

.NET provides software tools that
make it easier to develop a formal
software reuse program within
your department or company. Since
.NET is object-oriented, it’s good at
representing boundaries between
different types of objects, such as
tests or sequencers. Nonobject-based
languages, such as C, require you to
keep track of which functions apply
to which objects, without much
context-sensitive help or compile-
time error checking.

.NET also includes improved
versioning and deployment features.
In addition, .NET has the ability
to tell Windows that you will only
accept a certain version of an
external library. This eliminates one
of the common frustrations with
earlier versions of Windows where
you rely on an external library
(DLL), but then the DLL changes and
your software no longer functions
correctly.

49
www.agilent.com/find/open

Design reuse benefits
In summary, the reasons for imple-
menting a design reuse program
include improved software quality,
increased software development
efficiency, and better use of expert
knowledge.

Design reuse improves quality in
a couple of different ways. First,
software errors are reduced as a
result of the extra architectural
analysis, improved system design,
and flexibility and transparency.
With good reuse policies imple-
mented throughout the organization,
you have access to thoroughly tested
and verified components, reducing
the opportunities for creating new
defects.

Design reuse increases software
development efficiency by reducing
duplication of effort. Components
need to be designed, implemented
and tested only once. Good reuse
practices make it easier to reuse an
existing component as opposed to
re-writing or even re-creating a new
component.

Design reuse takes advantage of an
organization’s expert knowledge.
For example, most software devel-
opers spend time specializing on
a particular set of skills and will
write components based on those
skills. With time, the set of available
components for reuse becomes the
set of the best knowledge of your
organization. The company’s expert
skills and deep knowledge will be
evident in a rich set of reusable
software components.

These benefits are not theoretical.
The Software Engineering Laboratory
at the National Aeronautics and
Space Administration’s (NASA)
Goddard Flight Center achieved
significant benefits by implementing
software reuse in the development
of software products in its Flight
Dynamics Division. According to
the software engineering lab, NASA
realized a 35 percent reduction in
the effort needed to deliver a line
of code, a 53 percent increase in
daily productivity, and an 87 percent
increase in code quality.19

19	 Proceedings of the Sixteenth Annual
NASA/Goddard Software Engineering
Workshop: Experiments in Software
Engineering Technology, Software
Engineering Laboratory, December
1991.

Design reuse summary
Systematic design reuse across your
company requires that your manage-
ment value the extra efforts required
by designing for reuse. Failure to
invest and do the job right the first
time will lead to frustration and
wasted time down the road. One or
more repositories of software compo-
nents must be made available to all
the engineers who will need them.
You also need to be aware of any
copyright or patent limitations of the
code you plan to reuse. For example,
if your software is written under
contract with another company, they
may have exclusive rights to that
code.20

20	 Defter, Frank W, et al, “Software
Reuse: Major Issues Need to Be
Resolved Before Benefits Can Be
Achieved,” United States General
Accounting Office, 1993, http://www.
defenselink.mil/nii/bpr/bprcd/vol2/
272c.pdf.

50 4. Choosing Your Test-System Software Architecture

Conclusion
Before you begin writing code for
your test system, you need to make a
number of important decisions about
the system’s software architecture.
You will want to start by creating
a detailed software requirements
specification that defines what you
want the system to do and how it
should operate. The SRS should
include an outline of how you will
gather, store, analyze and present
your data as well as how end users
will interact with your system.

Another important decision you need
to make upfront is which program-
ming environment and language
you will use for writing your code.
Using a standards-based environ-
ment such as Visual Studio .NET
maximizes your flexibility and helps
you prolong the useful life of your
software. By combining Microsoft’s
Visual Studio .NET with Agilent’s
T&M Programmers Toolkit, you can
wrap objects written in a variety of
languages such as Agilent VEE Pro.
This allows you to pull them forward
into your new programming environ-
ment, making the most of your legacy
code investment.

Whether you choose a graphical or
textual environment will depend
on the size and complexity of your
system, your skill set, your company
standards, and the size of your
programming team. The decision
usually comes down to which envi-
ronment—graphical or textual— will
make you more productive. Textual
environments are almost always
the best choice for creating code for
large, high-throughput manufacturing
test systems because they offer the
most power and flexibility, and they
allow faster throughput.

Finally, you need to decide whether
to use an off-the-shelf test executive
or write your own test routines. Test
executives can speed up your test
system development and lower your
costs but will require an up-front
training investment. If you are only
performing a few tests, you may want
to consider writing your own code.

51

5. Choosing Your Test-System Hardware Architecture
and Instrumentation

Introduction
This chapter explores the hardware
architecture decisions and design
choices you must make before
you begin building your system to
ensure that it provides you with the
performance and flexibility you need.
It also discusses issues you should
consider as you select instruments
for your system.

A test system is essentially a group
of subsystems that work together to
test a particular device or range of
devices. You need to make important
decisions about each of the subsys-
tems before you begin ordering
test instruments or building your
system. The way these subsystems
communicate and interrelate has a
huge effect on the cost, performance,
maintainability and usability of your
system. The time you spend upfront
defining the architecture of your
system is likely to save you time
later that you might spend debugging
software and tracing down the cause
of faulty measurements. Ultimately,
careful planning will help you ensure
accurate testing of your DUT.

When you design a test system, you
need to consider many of the same
issues that architects consider when
they design buildings: esthetics,
safety, heat, size, cost, future expan-
sion, optimal location of parts, and
so on. Once you have decided how
to approach these high-level issues,
your test requirements will guide
you in designing a system for the
range of devices you expect to test.

This chapter explores the system
architecture decisions and design
choices you must make to ensure
your test system provides you with
the performance and flexibility you
need. It also discusses issues you
should consider as you select instru-
ments for your system.

System architecture
The architecture you choose for your
test system will depend on whether
you plan to use it for R&D, design
validation, or manufacturing test. In
R&D, for example, you are probably
performing parametric tests that
will not be repeated on hundreds of
devices under test (DUTs). In design
validation, you need to be able to
adapt to pinouts that are changing
often, but the speed of each indi-
vidual test is not particularly critical.
In high-volume manufacturing,
you’ve got hundreds to thousands of
DUTs to test, and you want to test
them as fast and as inexpensively
as you can. The architecture of
your test system will be different in
each of these situations. In an R&D
environment, you might not use all of
the subsystems listed below, but for
design validation, production valida-
tion or manufacturing test, typically

you will need to make decisions
about six major subsystems (see
Figure 5.1):

•	Instrumentation (measuring and
stimulus instruments)

•	Computing (computer, software
and I/O)

•	Switching (relays that interconnect
system instrumentation and loads
to the device under test, or DUT)

•	Mass interconnects (DUT-to-system
wiring interface)

•	Power sources (power to the DUT)

•	DUT-specific connections (loads,
serial interfaces, etc.)

The test engineer’s challenge is to
choose these subsystems carefully
and put them together efficiently.
Let’s look at each of the subsystems
individually.

System controller

Power sources

Analog Digital Power

Measuring/stimulus
instrumentation

DUT-specific
connections

Switching

Mass interconnect Device under test (DUT)

Interfaces:
LXI, VXI,

FireWire, MXI,
USB, LAN, PXI

Figure 5.1. A generic test-system architecture

52 5. Choosing Your Test-System Hardware Architecture and Instrumentation

Instrumentation type: rack-
and-stack or cardcage?
There are two major types of instru-
ments for test systems, rack-and-
stack and cardcage. Rack-and-stack
instruments are standalone test
instruments that can be used inde-
pendently. For test systems, they are
frequently stacked in a rack (hence
the name) to save floor space, and
typically, engineers use external PCs
to control them. Newer LXI instru-
ments often come in both traditional
rack and stack formats as well as in
smaller modular formats.

Cardcage instruments
Cardcage instruments, as their name
implies, are modular test instru-
ments on plug-in cards. You insert
the cards in a cardcage, or main-
frame, and control them either with
an embedded controller (a plug-in
card that is a PC) or an external PC.
Card-cage systems are often mixed
with rack-and-stack instruments to
provide all the functions needed in a
test system.

VXI is a standard, open architecture
for cardcage systems that allows
instruments from different manu-
facturers to operate in the same
mainframe (see Figure 5.2). The
VXIbus (VMEbus eXtensions for
Instrumentation) was developed by
a consortium of test-and-measure-
ment companies to meet the needs
of the modular instrument market.
The VXI standard was patterned
after the VMEbus standard, but it
was defined specifically as a new
platform because VME did not meet
the needs of the instrument commu-
nity, particularly with respect to
noise rejection and triggering. VXI
instruments typically offer more
performance and speed than other
instrument types.

Another cardcage architecture is
called PXI (PCIbus eXtensions for
Instrumentation). While PXI cards
are very small, they typically lack the
accuracy and performance of VXI or
rack-and-stack instruments. If you
are considering using a PXI system,
be sure to investigate whether you
will need to purchase additional
signal-conditioning equipment. Also,
PXI is based on a PC backplane with
no electromagnetic interference
(EMI) or cooling specs, and therefore
it is not as well suited to be a quiet
measurement environment. Note
that PXI is also transitioning to PXI
Express, so be sure to look at your
needs in the future to determine
if you should purchase a hybrid
PXI/PXI Express cardcage. See
the sidebar on page 54 to compare
attributes of PXI, VXI and rack-and-
stack systems.

Another cardcage architecture is
compact PCI (CPCI). CPCI technology
is the basis for PXI, although PXI
adds triggering options not available
in PCI. CPCI and PXI cards can be
interchanged to some extent. CPCI
cards tend to be used in industrial
PCs, because they are rack mount-
able and more rugged than other
card types.

Slot 0 interface
and control

Instrument
modules

Mainframe provides
communication,

power and cooling

Figure 5.2. VXI mainframe with modular test instruments on plug-in cards

53
www.agilent.com/find/open

Racked instruments
Racked instruments can take up
more space than cardcage instru-
ments, but typically they are less
expensive because they are produced
in higher volumes. It is easy to
find high-quality, high-reliability
standalone instruments that are
suitable for use in systems. Lately,
test-equipment manufacturers have
been putting more thought into how
their standalone test instruments
work in a system environment,
making rack-and-stack architecture
easier to implement. Agilent, for
example, offers “system-ready”
test instruments that incorporate
standard protocols and optimized
features like shielding, filtering,
high-speed I/O and on-board intel-
ligence and memory. Also with the
large percentage of hybrid (cardcage
plus rack-and-stack systems) and the
introduction of LXI modular rack
and stack instruments, there are
more choices to optimize space vs.
usability.

There are many benefits of using
system-ready rack-and-stack
instruments in your test system.
For example, they can reduce your
system development time because
troubleshooting a system is easier
when you use instruments that are
capable of standalone operation. You
can use an instrument in standalone
mode to run preliminary checks
to ensure you are getting good test
results before you have the entire
system set up. You cannot do the
same with cardcage instruments, so
it is more difficult to differentiate
between hardware and software
problems.

In some organizations, using a
standard set of racked instruments
throughout the product lifecycle
can lower the barriers to effective
communication and cooperation
among organizations with different
responsibilities. For example, R&D
engineers may use benchtop instru-
ments as they develop and fine-tune
product designs. When they turn to
design validation testing—or in the
case of larger organizations, when
they turn their pre-production proto-
types over to the design validation
department— it is helpful to use the
same instruments, even though the
tests are more likely to be automated
or semi-automated at the design
validation stage. If it is the same
engineer doing the validation testing,
he or she is already familiar with
instrument operation and already
trusts the test results the instru-
ment generates. If R&D and design
validation are handled by different
engineers or different organizations,
using the same test instruments can
facilitate effective communication
and shared problem solving. You get
the same benefits if you use the same
test system architecture when the
product moves to manufacturing.

Making a choice
The decision you make about which
instrument architecture to use will
be influenced by several factors.
If you are building a system from
scratch, you will want to look at
overall system performance and
cost. However, if you already have a
collection of either rack-and-stack or
cardcage instruments, reusing them
and adding to your collection may
be more cost effective than starting
over. Also important is whether you
have access to rack-and-stack or
cardcage systems-building expertise.
If all the expertise in your company
is with cardcage architecture, it may
not make sense to switch to rack-
and-stack, even if the equipment
cost is less. If you decide to stay with
an existing cardcage setup for your
system, you may want to consider
migrating to a hybrid system, adding
rack-and-stack instruments to gain
the capabilities or performance you
need. You will need to evaluate the
specific circumstances to make the
best decision.

Another factor to consider is the cost
of maintaining your system. Look
into typical repair costs and the cost
of keeping spare parts and extra
instruments/cards on hand.

“Choosing instruments for your
system” on page 59 offers more
detailed information about choosing
the right instruments for your
system.

54 5. Choosing Your Test-System Hardware Architecture and Instrumentation

1. Standalone use

With an internal PC, a cardcage can
operate standalone, but you need a
monitor if you require an operator GUI.
Cost of an embedded PC is several times
that of a standard PC. In any case, card
cages generally require some form of
computer communication in order to be
useful, while rack-and-stack instruments
can be used to check out the system
without a computer present.

2. Accuracy

Cardcages have power supplies that
must be shared among several subsys-
tems. Rack-and-stack instruments
are optimized to one use, so they are
designed to have the right power supply
for the job at hand, and analog circuitry
that is not subject to cage-imposed
restrictions. Rack-and-stack instruments
are designed to minimize magnetic inter-
ference so they are less likely to induce
currents that would disrupt sensitive
instruments. As a result, rack-and-stack
systems typically outperform cardcage
systems in terms of accuracy, crosstalk,
noise, and other factors.

3. Price

Cost of a bench-top system is usually
lower when instruments are not
rack-mounted. When instruments are

rack-mounted, system cost depends on
the configuration of the rack.

4. Burst speed

Burst speed is the speed at which the
instrument can move a large amount of
data from a single channel across some
bus or I/O port to the computer. Burst
communication is used in data acquisi-
tion more than it is used in functional
test. Cardcages typically shine in this
arena, although recent improvements
in I/O speed, such as the adoption of
fast LAN, have blurred the distinction
between backplane and external I/O.

5. Single-point measurements

Single-point measurement speed is the
time it takes to make a single measure-
ment, switch channels and then make
another measurement. This is the
predominant mode used in functional
test. You’ll find more information
about test-execution speeds in the
“Measurement speed” section on
page 60.

6. GUI response time

When a cardcage communicates to
the PC, the PC must often do double
duty as it processes the data and also
updates the GUI. In some rack-and-stack
instruments, these operations happen in
parallel, giving the operator more real-

time update capability. This is especially
true with an oscilloscope, where lack of
immediate feedback can be annoying.

7. Footprint

PXI and CPCI systems have the smallest
footprints. However, many instrument
functions are not fully realizable in PXI,
so engineers typically adopt a hybrid
approach of rack-and-stack plus PXI
instruments. Once you have a rack for
part of your system, you use the same
amount of floor space as you would for
a full rack-and-stack system, so you lose
the space-saving advantage offered by
the small form factor of the PXI cards

8. Ease of use and integration

If a racked system has been designed
to accommodate a reasonable amount
of expansion space (a good idea to plan
for unforeseen future needs), adding
instruments to a rack is not a lot more
complicated than adding an instrument
to a cardcage. A more important consid-
eration is the ease of adding additional
cables to an existing architecture. For
example, whether you use a cardcage or
several racked instruments, their inputs
and outputs are usually connected into
a switching system or a mass intercon-
nect. If the system has been designed to
handle such new instruments, integra-
tion will only take a few minutes. If the
system has to be redesigned to handle
the new instrument, it can take days.

9. Shielding

Dedicated rack-and-stack instruments
are typically well shielded. Since they
are designed for a specific purpose, they
are frequently more noise-free than their
card-cage counterparts. VXI has specific
shielding specifications, and these are
lacking in PXI and CPCI. While it is
possible to shield PXI, the implementa-
tion is left up to the vendor, so placing
a new vendor’s product in a slot may
result in unwanted interference with
nearby instruments.

Comparison of instrumentation types

 Rack and
stack

VXI CPCI PXI See notes:

Standalone use Yes No No No 1
Accuracy **** *** ** ** 2
Price $$ $$$$ $$$ $$$ 3
Burst speed ** to **** **** **** **** 4
Single-point
measurement speed

** *** ** ** 5

GUI response time **** ** ** ** 6
Footprint ** ** **** **** 7
Ease of use and
integration

**** * * * 8

Shielding **** *** * * 9

55
www.agilent.com/find/open

 The computing subsystem
Before you consider the ques-
tions surrounding the computing
subsystem, you need to decide
whether you will control your system
manually, semiautomatically or with
a fully automated control system.
These issues are addressed in
Chapter 1, Introduction to Test-
System Design. The information in
this computing subsystem section is
for test engineers who have decided
to use either automated or semi-auto-
mated control.

For systems that use rack-and-stack
test instruments, you will most likely
use an external or racked PC that is
cabled to the instrumentation. For
test systems that use card-based
instruments, you need to decide
whether to use an embedded PC
(one that fits inside an instrumenta-
tion cardcage) or an external PC. At
first glance, the embedded PC may
seem like a good choice. It fits inside
an existing cage, so it uses rack
space efficiently, and it is directly
connected to the backplane, so
data transfer speeds are excellent.
Unfortunately, embedded PCs cost
a lot more than external ones, and
typically they do not have room to
hold many modern peripherals.
The technology used in embedded
PCs tends to lag the technology of
the general computer industry, so
embedded PCs often are at least a
generation behind in processor type
and speed.

If you use an external PC, you will
get more computing power for your
money. In addition, most external
PCs come with industry-standard
interfaces like LAN, USB and
FireWire built-in. If you use a PC
with these interfaces, you can lower
the cost of your test system by using

test instruments that support these
interfaces, or shorten setup time
by using USB/GPIB or LAN/GPIB
converters. This topic is covered in
detail in Chapter 2, Computer I/O
Considerations.

In manufacturing environments, cost
is typically a critical concern, espe-
cially when you are implementing
hundreds of identical test systems.
The lower initial cost of external PCs
typically makes them a better choice
for manufacturing test systems, and
the fact that they are typically less
expensive to service than embedded
controllers adds to their appeal. 1U
or 2U rack-mountable PC controllers
are now available that can be a good
trade of size and cost.

Another major computing consid-
eration is the choice of software
and application-development and
runtime environments. Computing
subsystem decisions related to
software are covered in Chapter 4,
Choosing the Test-System Software
Architecture.

Switching
Switches, or relays that interconnect
system instrumentation and loads
to your DUT, are an integral part
of most automated test systems.
Choosing the proper switch type
and topology will impact the cost,
speed, longevity, safety and overall
functionality of your test system. For
a thorough examination of switching
in test systems, see Application
Note 1441-1, Test System Signal
Switching.

The types of relays you choose
for your low-frequency switching
subsystem are important, as they
affect the type of circuits and
systems you can test. Reed relays
and FETs are the best choice for
high-speed systems, and of the
two, reeds have higher voltage and
current ratings. Reed relays are

excellent choices to connect measure-
ment instruments and low-current
stimulus to the DUT. They are very
fast (typically about 0.5 to 1.0 ms),
although they can have a higher
thermal offset voltage than armature
relays. Use armature relays (which
typically switch in 10-20 ms) for
higher-current loads. When you use
armature relays, group your tests so
the relays stay connected to perform
as many readings as possible at one
time. Because armature relays are
relatively slow, you will want to avoid
connecting and disconnecting them
multiple times.

Switching topologies can be divided
into three categories based on their
complexity: simple relay configura-
tions, multiplexers and matrices.
The best one to use depends on the
number of instruments and test
points, whether connections must be
simultaneous or not, required test
speed, cost considerations and other
factors.

A matrix arrangement of reed relays
provides an excellent way to allow
any instrument to be connected to
any pin on your DUT, and it permits
easy expansion as you add new
instruments to your system or more
pins appear on your DUT. Matrices
use more relays than multiplexers, so
they tend to cost more. If you don’t
need to connect multiple instru-
ments to any pin, a multiplexer is a
suitable solution. If you have a 1 x
20 multiplexer for example, you can
connect a test instrument to 20 pins,
but you can’t hook anything else to
those 20 pins. With those same 20
relays in a matrix, you can connect
four instruments to five pins in any
combination.

56 5. Choosing Your Test-System Hardware Architecture and Instrumentation

of high-speed instruments, not
simple relays. If you place relays in
a separate box that is tuned for that
purpose, it will be easier to expand
the high-performance instrumenta-
tion while allowing room separately
for denser relay cards, more relay
cards or a bigger switchbox. It
also makes a clearer delineation
between the instrumentation and
the switching subsystems, which
makes it easier to keep your system
organized.

Placing the DUT interface panel
(mass interconnect or feedthrough
panels) in front of a switching
subsystem that has the plug-in cards
facing the interface panel accom-
plishes two goals: 1) It minimizes
rack space, because the switchbox

and mass interconnect are in the
same plane, and 2) it reduces wire
length from the switching to the DUT.
If the box you choose has cards in the
rear, reverse-mount the switchbox
using the rails on the rear of the
rack, as shown in Figure 5.4. There
are two negatives to this approach:
the front panel of the switching
instrument is not accessible from
the front of the system, and it can be
harder to reach the plug-in cards for
service. However, once a system is
operational, it is seldom necessary
to operate a switchbox from its front
panel, and cards can be accessed by
pulling the instrument out the back
or by removing the side panel of the
system.

In manufacturing test and design
validation systems you often need
banks of general-purpose relays
of varying current capability. You
can use such relays to connect DUT
inputs to ground or to a supply, or
through resistors to simulate dirty
switches. You also can use them to
provide ways to disconnect output
loads in order to allow parametric
tests on output transistors, as shown
in Figure 5.3.

You also need to think about where
to place and how to arrange your
switches. While relay cards can be
placed in a cardcage that is intended
for high-performance instruments, it
is a waste of valuable real estate. The
high-speed backplane in a modular
cage is more suited to the control

Typical DUT
outlet driver
MOSFET with
zener protection

Measure protection
zener using current source

Current sense
resistor

Switch in load
for powered test

Measure leakage
current using
voltage source

Load 12v

R

DVM

DVM

V

+

Figure 5.3. Switched loads allow parametric measurements

Figure 5.4. Rear-mounting the switching
subsystem reduces rack space and minimizes
cable lengths

57
www.agilent.com/find/open

Mass interconnects
A mass interconnect panel is a
DUT-to-system wiring interface that
allows you to use fixtures instead of
wiring each connection separately.
When you are designing a functional
test system for a design lab, it is
tempting to leave out a mass inter-
connect, since the product design
changes so much and the extra time
to rewire a fixture is not productive.
It also is not as likely that you will
make identical measurements on
large numbers of devices. Simple clip
leads may suffice, especially for small
DUTs. Interface panels are relatively
expensive—using one can easily
double the cost of a system— but
there are a couple good reasons for
adding one to your design-validation,
production-verification or manufac-
turing test system:

•	A mass interconnect provides a
physical location for mounting
interface components such as
terminal blocks, fuses, custom elec-
tronics/interfaces/conditioning,
etc., between the system and the
DUT. You can mount these compo-
nents either to the interface frame
or to a shelf attached to the frame.

•	Device measurements are less
likely to change due to random
movements of wires.

•	Using terminal blocks on the inter-
face makes it easy to make wiring
changes as the DUT changes,
allows easy connection of multiple
resources to common points, and
provides easy test connections for
debugging the system.

For design validation, production
validation and manufacturing test,
mass interconnects are typically well
worth the investment. They provide
a fast and robust means of changing
connections to different DUTs using
the same system.

You can obtain more information
about mass interconnects from the
three major manufacturers: Virginia
Panel, MAC Panel and Everett
Charles Technologies/TTI Testron.

Power sources
DUT power is an integral component
of a test system, whether it is a
simple bias supply or an advanced
system power source. Depending
on your application, your DUTs can
require anything from a few milli-
watts to many kilowatts. There are
many power supplies available for
providing power to a DUT. Choosing
the right one is more complicated
than simply picking the right voltage
and current level.

Testing your DUT will be a lot less
frustrating if you choose a reliable
system power source that provides
a stable voltage source to power
the DUT and built-in measurement
capability to verify DUT performance
under various operating conditions.

When you select your DUT power
source, consider the following:

•	Number of outputs needed

•	Settling time

•	Output noise

•	Fast transient response

•	Fast programming, especially
down-programming response

•	Remote sensing—compensate for
voltage drop in wiring

Tips for successful
switching
1.	Place system switching in a box

dedicated for that use, such as the
Agilent 34980A switch/measure
unit or the 34970A data acquisi-
tion/switch unit. Placing all system
switching in one place minimizes
cost and helps to keep your system
organized. Allow enough room to
expand the switchbox to a larger size
or to provide room for another one as
your needs grow.

2.	Inside the switchbox, create an
instrumentation matrix. For example,
create a 16 x N switch matrix,
connecting instruments to the 16
“rows”, and your DUT to the “N”
(column) side, allowing one matrix
column per DUT pin. By making N
an expandable number, in incre-
ments of, say, 16 or 32, you can
handle modules that are close to
your immediate needs with a way
to easily expand to higher-pin-count
modules in the future. When you
need new instruments, simply
connect them to a new set of rows.
No additional wiring is needed.
Since most instrumentation is low
current and must be scanned across
multiple points quickly, choose fast
reed relays or FET switches for this
architecture.

3.	Also inside the switchbox, allocate
a set of general-purpose relays for
power supply and load connections.
These relays are generally too big
to allow economical creation of
a high-current matrix that could
programmatically assign any DUT
pin to any load. Therefore, bring
such relay connections out directly
to an interface panel where they
can be connected to the appropriate
pins. When you are designing the
switching for your test system, you
may want to build in some safety
features. Particularly if you are
working with high voltages or high
currents, you might want to include
a switch to disconnect all signals, to
minimize the chance for potentially
serious accidents.

58 5. Choosing Your Test-System Hardware Architecture and Instrumentation

•	Built-in, accurate, voltage and DC
current measurement or waveform
digitization

•	Small size—it’s possible to get
linear performance (low noise) out
of a switched power supply to free
up rack space

•	Triggering options

•	Programmable output impedance

•	Multiple outputs and sequencing of
outputs

•	Over-voltage protection

•	Over-current protection

•	Lead lengths

•	Safety due to exposed voltages

Your choice of supply can dramati-
cally impact system throughput,
since waiting for power supplies to
settle can be one of the most time-
consuming elements in a typical test
plan.

DUT-specific connections
Many DUTs require components to be
connected to their outputs in order
to adequately stress the unit (Figure
5.5). These can take the form of resis-
tive or reactive output loads such as
resistors, light bulbs or motors, or
complicated, simulated loads such as
the dynamically varying current in
a camera battery. In most cases, it is
wise to provide a place to put such
loads in a system, such as a slide-out
tray on which small, discrete loads
can be mounted. Some DC-program-
mable loads (the size and shape of a
power supply) can be rack mounted.
Such loads are often connected to
the DUT through relays to allow the
DUT to be completely disconnected
from all test system resources. If you
decide to use relays, locate the loads
close to the switching subsystem to
minimize cable lengths.

Other architectural
considerations
In addition to the foregoing deci-
sions, make sure your planning also
takes into account AC power distri-
bution, cooling, ergonomics, safety,
and future expansion.

AC power diistribution
If you are designing a system that
you expect to replicate and ship to
areas of the world that have different
power requirements, you will prob-
ably want to include a power distri-
bution unit in your system to make it
easier to convert to the appropriate
scheme. Power distribution units
give you a way to route power, detect
power line problems, and filter the
input, and they provide the potential
for adding uninterruptible power
supplies and an emergency off (EMO)
switch input.

Cooling
If you do not pay attention to cooling,
temperatures in a rack can easily
exceed environmental conditions
specified for your test instruments.
When this happens, your instru-
ments can fail prematurely and

your measurement results can be
jeopardized. Temperature gradients
are also something to consider. If one
end of the rack is ten degrees hotter
than the other end, even if the overall
temperature is within instrument
specifications, the resulting gradient
can cause some unwanted thermo-
couple effects or slow drift errors.

You can use extractor fans to draw
air through your system to remove
heat. If you cannot create enough
airflow to remove the heat with a
fan, you may need to consider air
conditioning your rack. There are
standard NEMA enclosures that can
be used for this purpose.

If you are using rack-and-stack test
instruments, it is important to think
through how you place the instru-
ments in the rack. Test instruments
typically pull air in on one side or
through the bottom and exhaust
hot air out the other side or the
top. Be careful not to position an
instrument’s air intake adjacent to
another instrument’s exhaust vent.
You will find more information about
racking test instruments in Chapter
6, Understanding the Effects of
Racking and System Interconnections

Power supply +

Current
sense
resistor

DUT pins Terminal block connections

Power supply –

Load

Load

Load

Example of multiplexing a load

Example of a bridge load

Load

Load

Figure 5.5. Simplified diagram showing ways you can connect loads in various configurations. A
“bridge load” connects a load between two pins on the DUT, rather than between an output and
ground or an output and power.

59
www.agilent.com/find/open

Ergonomics
As you make decisions about your
system architecture, keep in mind the
operator’s comfort and convenience.
Provide adequate work space at the
correct height, depending on whether
the operator will be sitting or
standing. Put displays at a comfort-
able height and if appropriate,
provide the ability to tilt the display
to reduce glare and eyestrain. Make
sure illumination is adequate for
the tasks that need to be performed.
Provide for left-handed and right-
handed operators by allowing a
mouse to be placed on either side of
the keyboard.

Safety
If you are working with high voltages,
consider using interlocks to prevent
accidents. Take precautions to deal
with static electricity. For moving
parts that could cause bodily harm,
consider using deadman switches
(two switches, both of which must be
engaged for the equipment to run)
and EMO switches (a single switch
to turn off the entire system in an
emergency). Position heavy equip-
ment low in the rack and watch how
you distribute weight in the rack to
prevent it from tipping over. Also
consider how weight distribution
would change if you were to remove
an instrument for maintenance.

Future expansion
To maximize the re-usability of a
functional test system, you need to
design it in such a way that in the
future it will be able to accommodate
more instruments, more switches
and bigger DUTs that require more
power, without a complete re-design.
To maximize your long-term flex-
ibility, use open standards whenever
possible. Make sure to allow 20
percent to 30 percent extra room
in a cardcage, or 20 percent extra
room in your rack to accommodate
instrument additions. See Chapter 1,
Introduction to Test-System Design,
for more ideas about planning for
future expansion.

Choosing instruments for
your test system
The measurement and stimulus
instruments you choose for your
system—whether they are rack-and-
stack instruments or instruments on
a card—will be driven largely by the
functional and parametric tests you
need to perform, and whether you
are using manual, semi-automated or
fully automated control for your test
system.

Identify your needs
In all cases, it is wise to start by
making a thorough list of the inputs
and outputs of each of the devices
you plan to test and the parameters
you will measure. Note the accuracy
and resolution you need for each
measurement as well. Once the list
is complete, check to make sure
it does not contain redundant or
unnecessary tests. Then identify
possible test instruments for the
required measurements and look
for opportunities to use the same
piece of test equipment for multiple
measurements.

The types of instruments you need
will vary depending on your appli-
cation. However, there are several
universal questions that you must
answer in order to select measure-
ment and stimulus instrumentation
properly:

1.	 AC stimulus. How many dynamic
(AC) signals do you need to apply
simultaneously? This determines
the number of channels of arbi-
trary waveform or function/signal
generator you require.

2.	 DC stimulus. How many static
(DC) signals to you need to apply
simultaneously? This determines
the number of channels of DAC
(digital-to-analog converter) you
will require.

3.	 Measurements. What types of
measurements do you need to
make, and how many simultane-
ously? If minimizing instrumenta-
tion costs is essential, look for
ways to minimize the number
of instruments you need by
paying attention to the ancillary
functions of instrument that
might perform double duty.
For example, you can perform
RF power measurement with a
spectrum analyzer if accuracy
and speed are not critical to your
application. If you only need to
know the power supply voltage
within 0.5 percent, you might be
able to use the internal voltmeter
inside your power supply, using
the read-back mechanism to read
voltage on terminals.

4.	 Protocols. Do you use any special
serial data protocols? This deter-
mines the need for instruments
to handle things such as CAN,
ISO-9141, J1850 and many more.

Once you have made your measure-
ments list and answered these initial
questions, you can refine your list of
instrument possibilities by looking at
your budget and time constraints and
your requirements around measure-
ment speed.

Development time
When you are choosing instru-
ments for your test system, look for
instruments that will minimize your
development time. You can save time
by using rack-and-stack system-ready
instruments that incorporate a high
percentage of the measurement
solution you need. For example, if
you use a source with modulation
capability, you don’t have to develop
your own algorithm or integrate
additional hardware to generate the
required modulation.

60 5. Choosing Your Test-System Hardware Architecture and Instrumentation

If you want to minimize hardware
costs, you can investigate auxiliary
capabilities. However, if your goal
is to minimize development time,
buy instruments that are specifically
designed to do the jobs you need
done. Using instruments with IVI-
COM drivers can save you develop-
ment time. If the instrument has an
IVI-COM driver, you can interchange
hardware without rewriting your
software, as long as you adhere to
the functionality that is specific to
the instrument class. See Chapter 3,
Understanding Drivers and Direct
I/O, for to learn how decisions about
drivers affect development time.

Test instruments with download-
able personalities also can save you
development time. You download
the measurement personalities for a
specific application directly into the
test instrument’s internal memory.
Then you can simply choose from a
menu of tests, and the personality’s
“intelligence” automatically performs
the tests, from capturing signals
to displaying results. Agilent spec-
trum analyzers, for example, have
measurement personalities for
testing cable TV, phase noise, cable
fault, Bluetooth™, cdmaOne, GSM/
GPRS, as well as a variety of other
wireless protocols and modulation.

New LXI instruments from Agilent
allow instrument monitoring from
the instrument web page. This allows
monitoring of the instrument state
from the same computer screen as
your test program. The web page is
also a useful debugging tool.

You typically spend a large
percentage of total development time
on debugging your system, particu-
larly if you are building a new test
system. You can reduce your debug
time significantly by writing a diag-
nostic test routine that loops outputs
back to inputs through a large part of
the switching path. This exercise will
help you quickly identify the cause of
problems— whether it is a source, a
measurement instrument or a switch
path.

For more ideas on minimizing your
development time, see Chapter 4,
Choosing Your Test-System Software
Architecture.

Measurement speed
If you are building a manufacturing
test system (and to a lesser extent in
design validation applications), the
time it takes to execute each test can
be critical. But figuring out how fast
your system will perform measure-
ments is harder than it appears. For
example, a digitizer may be able to
sample 1000 readings very fast, but
if those readings are transferred to
the PC over GPIB, it could take a long
time. A digitizer that can have a deci-
sion-making algorithm downloaded
into it could allow a simple go/no-go
result to be sent back to the PC,
which would make GPIB a reasonable
option and may save money over a
cardcage-based solution. However,

it takes extra effort to create and
download a decision algorithm into
an instrument, which may increase
development time as well as “first-
run” time of the test program. Also,
inside an instrument the readings
will be analyzed by a much slower
processor than the one in the PC, so
this must be factored in as well.

Simply reading the data sheet does
not tell the whole story. Maximum
reading rate specifications are
usually related to burst speed (see
Figure 5.6); that is, the speed which
you can sample the signal on a
single channel. But that is not the
typical mode for functional test. In
functional test, the system normally
makes a single measurement, then
changes a parameter like range or
function or channel, and then makes
another measurement. In this case,
the burst rate is meaningless. Take
for example, two multimeters—one
LXI and one PXI. Note that both
multimeters can perform up to
10,000 measurements/second
or more in burst mode, but their
single-sample measurement speed
is much slower due to the transac-
tion overheads of controlling each
measurement. Even a high-speed bus
such as PXI makes little difference
to the readings/second because the
total time is dominated by the setup
and measurement time.

Figure 5.6. Burst speed can be misleading; since single-sample measurement speeds are usually
significantly lower.

30,000
25,000
20,000
15,000
10,000
5,000

0

A. DMM multi-sample measurement speed
4.5 digits, no switching (readings/sec.)

LXI DMM PXI DMM

350
300
250
200
150
100
50
0

A. DMM single-sample measurement speed
4.5 digits, no switching (readings/sec.)

LXI DMM PXI DMM

61
www.agilent.com/find/open

At higher resolutions, burst rate
again becomes moot, since actual
reading rates are a function not only
of DMM sampling times, but also of
relay switching times. Since such
reading times can be generally less
than 10/s, these readings tend to be
done only when the extra resolution
is absolutely necessary.

For a discussion of how data transfer
rates over different interfaces affect
your system’s overall measurement
speed, see pages 23-24 in Chapter 2,
Computer I/O Considerations. For
a detailed look at ways to maximize
your system throughput, see Chapter
7, Maximizing System Throughput
and Optimizing System Deployment.

Choosing a vendor
The proper design of instrumenta-
tion requires attention to minutiae.
Choose an instrument manufacturer
who has been through the learning
process and knows how to minimize
system noise and maximize accuracy
and throughput.

Simple systems are one thing, but
when you put several instruments
together, strange things sometimes
happen. That’s when it’s nice to have
local support and service. Choose a
vendor who can help you with issues
like repeatability, system noise,
calibration and drift.

If your vendor can supply
specifications that apply to a whole
subsystem—like a central switch— it
will save you the time and trouble of
trying to add all the specifications of
a multitude of vendors together to
divine what the true accuracy of your
system might be.

Calibration can be an expensive and
time-consuming part of building a
system. Make sure you don’t have to
ship your system halfway across the
world to get it calibrated. Calibration
is especially important in the world
of RF and microwave, so make sure
your vendor’s support organization
can handle your needs.

Example test system
To illustrate the concepts and issues
discussed in this chapter, we will
design a test system (see Figure 5.7)
from scratch that can be used to test
low-frequency, low/medium-pin-
count, low/medium power electronic
modules. These devices are typical
of the automotive and aerospace/
defense industries.

Figure 5.7. Functional test system

PC (can behind PC)

Optional 2nd DMM

Function generator

Scope with
CAN trigger module

Switchbox located
directly behind
interface panel

VXI cage with
FireWire, digitizer,
DAC, and DMM

Room for expansion

Power supply

62 5. Choosing Your Test-System Hardware Architecture and Instrumentation

Make architectural choices
Table 5.1 shows the architectural
choices we made for this test system.

Design the system
Now, we will apply the architectural
decisions to a system for testing an
electronic throttle module for an
automotive throttle body. According
to the test specification, the following
equipment is required to run the tests:

•	Programmable volt/ohm/ammeter

•	Programmable power supply—
0-13.5 V/0-10 A

•	Waveform generator capable of
pulse-width modulation, 0-10 VDC,
0-3 KHz

•	Low current DC voltage source
(0-5 VDC)

•	Waveform analyzer

•	CAN interface

•	Simulated or actual stepper motor
load

The DUT has 14 pins total on 3
connectors. Looking at various
catalogs, and adopting the architec-
ture specified earlier, we chose the
instruments shown in Figure 5.7.

There are three LXI instruments—
the power supply, switchbox, and
oscilloscope. We will use an 8-port
LAN hub providing extra ports, thus
“future-proofing” the system. Table
5.2 lists the instrumentation used in
this sytem.

Our system uses many I/O interfaces:
LXI (LAN), RS-232C, FireWire and
GPIB. Using Visual Studio.NET with
IVI-COM and VXIplug&play instru-
ment drivers along with VISA I/O
libraries, the control program can
communicate easily with instruments
on all of these interfaces. In fact,
should an instrument’s I/O interface
ever change (say from FireWire to
LAN), all that will have to change
in the program is the initialization
string. It is also possible to specify
use of an aliased name to eliminate
the hard-coding of I/O addresses.

Figure 5.8 shows how the instru-
ments will be connected to the
switching subsystem. We are using
a matrix, so any instrument can be
connected to any DUT pin, and we

Table 5.1. Architectural decisions for sample test system

Subsystem	 Decision	 Reason
Instrumentation (measuring 	 Mix card-based and rack-and-stack instrumentation	 Most cost-effective solution; helps optimize system
and stimulus instruments)	
	 •	Use VXI for higher-speed DMM, multi-channel 	 Maximize system speed; digitizer not available as
		 DACs, and digitizer	 rack-and-stack instrument
	 •	Use rack-and-stack for other test instruments	 Accuracy, ability to prototype system before writing code
	 Allow about 20%-30% extra rack space for 	 Allow for future expansion
	 rack-and-stack instruments
	 For card-based instruments, leave either 20% 	 Allow for future expansion (expected need for bigger
	 expansion room in the cage, or room in the rack 	 switchbox and/or more power supplies)
	 for a bigger cage
	 Use a rack with a top-exhaust cooling fan	 Hot air rises, and top fan does not interfere with
		 access anywhere in rack
Computing 	 Use an external PC, not an embedded PC	 Lower cost, standard interfaces
(computer, software and I/O)	 Use only industry-standard interfaces	 Easier support
	 Use FireWire interface to control VXI instruments	 For speed
	 Use Microsoft Visual Studio.NET software	 Rapid development
Switching	 Place switching into a separate subsystem	 Separate cardcage-based switchbox houses
(relays that interconnect system			 low-data-rate instruments more cost effectively
instrumentation and loads to the 	 Use a matrix switching architecture for measurement	 Ease of expandability, more flexibility in where
device under test, or DUT)	 instruments and low-current stimulus	 instruments can be connected
Mass interconnect 	 Place the DUT interface panel (mass interconnect 	 Minimize cable length, save rack space
(DUT-to-system wiring interface)	 or feedthrough panels) in front of the switching
	 subsystem	
Power sources (power to the DUT) 	 Use high-current power supply and allow room for 	 DUT requires high current. Bigger DUTs are
	 more than one in the rack	 expected from R&D in the future
	 Consider a modular power source	 Greater flexibility
DUT-specific connections 	 Connect high-current DUT pins to general-purpose 	 Ability to disconnect loads from DUT to allow other
(loads, serial interfaces, etc.)	 relays that can be wired to power supplies and loads	 measurements to be made on those pins

63
www.agilent.com/find/open

When you use a matrix, you can
connect multiple signal sources to
the same pin. It is important not
to accidentally short such sources
together. Switching routines should
be carefully written to either
eliminate this possibility or to offer
warnings when improper conditions
occur.

If you need to power up and run the
DUT in full-functional mode, you may
need to modify the test system either
with more instrument busses or with
more devices connected directly to
the DUT. You must carefully analyze
the type of testing that is required
and plan accordingly.

can add new instruments easily by
expanding the number of rows and
columns. All connections to the DUT
except for the CAN bus are switched,
making it possible to measure conti-
nuity from pin to pin. We are using a
star ground to avoid ground loops.

A mass interconnect is an option for
this system. This particular DUT only
has 14 pins, so in an R&D or design
validation environment you may not
require the flexibility provided by
such an interface. If the number of
pins is small, simply bringing them
directly out of the switchbox to DUT
connectors may be sufficient. In the
future, if the modules you are testing
have more pins, or if you need a
place to put other things between
the system and the DUT, you may
need a commercial mass interconnect
solution. Therefore, we will provide a
space directly in front of the switch-
box for such an interface.

We chose a 5-wire measurement bus
because it allows all four leads of the
DMM to be connected to different
pins on the DUT, making 4-wire ohms
measurements possible. We routed
two matrix points to the same pin
on the DUT (as shown in Figure 5.8
on the Pot1 and Pot2 Gnd pins), to
make the resistance measurement
very accurate, since the remote sense
location is made right at the DUT. If
you don’t use two wires, you can still
make a 4-wire ohms measurement
inside the relay matrix, which in
some cases may be good enough. The
fifth bus wire is connected perma-
nently to the star ground, and so it
serves as a common reference for
any single-ended devices, such as the
oscilloscope, or for floating devices
that can be connected to ground,
such as the function generator,
digitizer, DAC and DMM.

CAN CTM

C
A

N
 H

/L

Pot2 Wiper
Pot2 Vref
Pot2 Gnd

Pot1 Wiper
Pot1 Vref
Pot1 Gnd

Brake

Accel

Mot –

Mot +

Pwr Gnd

VBatt

Load tray DUT - electronic
throttle module

(CAN trigger module)

Mass
interconnect

PS

Fgen

–

2

1

– Sense

1a

2a

3a

4a

5a

6a

7a

1b

2b

3b

4b

5b

6b

7b

+

+ Sense

VXI

Mixed Sig
Scope

DAC

DMM

Digitizer

Figure 5.8. Block diagram of system

Table 5.2. Instrumentation decisions for sample test system

Instrument	 Reason
Rack-mountable arbitrary waveform/	 Need to generate PWM signals inexpensively
function generator
Heavy-duty power supply	 Module requires 10A of inrush current
Optional DMM	 Debug
Oscilloscope with CAN trigger module	 Monitors signals including CAN traffic
Dedicated switching cardcage (“switchbox”)	 Separate cardcage-based switchbox houses
	 low-data-rate instruments more cost effectively
4-slot VXI cage containing: 	 Provides the most channels in a reasonable form
		 factor; space for future expansion
	 • Digitizer 	 For high-resolution sampling
	 • 16-channel DAC	 Need a DAC for generation of a brake signal
	 • High-speed DMM	 Actual measurements are fastest with this one
	 • An RS- 232C-based CAN interface 	 Module requires CAN interface for putting module
	 is located on a shelf behind the PC	 in test mode

64 5. Choosing Your Test-System Hardware Architecture and Instrumentation

resources in the columns. Since
star ground is physically located
outside of both the system and the
DUT, it shows up in both a row and
a column. Wires are connected from
the DUT pin number to the relevant
system resource. For example, the
battery input, Vbatt (J1-1), has
two wires attached to it—one to
general-purpose relay 7b and one to
general-purpose relay 6b, which puts
remote sense of the power supply
right at the DUT. In addition to DUT
pins, there are other internal system
connections that must be made, and
they are shown in a separate section
of the spreadsheet.

It is helpful to make a wiring map
that shows how the DUT will connect
to your system. Table 5.3 shows how
to make one using a spreadsheet.
In the future, when it becomes
necessary to test a different DUT,
all you need to do is to create a new
spreadsheet and wire the new DUT
accordingly.

Since the system has many resources
available and they can be expanded
without changing the basic system
architecture, new DUTs are easily
accommodated. The spreadsheet is
constructed with DUT pin names
and numbers in the rows and system

Conclusion
Before you begin choosing test
instruments for your test system, you
need to make a series of high-level
decisions about your system archi-
tecture. The architecture you choose
for your test system will depend on
whether you plan to use it for R&D,
design validation, or manufacturing
test and on your budget and develop-
ment-time constraints, your existing
expertise and your measurement
throughput requirements.

Important questions to consider
include the following:

1.	Should you use a rack-and-stack,
cardcage or hybrid (combination)
architecture?

2.	If you decide on card-based
instruments, should you use an
embedded PC (one that fits inside
an instrumentation cardcage) or an
external PC?

3.	Which switch topology—simple
relay configurations, multiplexers
or matrices—and which switch
types (reed relays, FETS or arma-
ture relays) should you use?

4.	Does a mass interconnect make
sense for your system?

5.	Which power supplies and loads
should you choose?

6.	Which measurement and stimulus
instruments should you choose?

7.	What should you do to minimize
your hardware costs?

8.	 What should you do to minimize
development time?

9.	 What should you do to maximize
system throughput?

10.	Which hardware vendor should
you use?

If you answer these questions care-
fully, you will help you ensure that
your test system produces reliable
results, meets your throughput
requirements, and does so within
your budget.

Table 5.3. DUT wiring spreadsheet

 System Resource Name
DUT Pin Name Pin Nr Matrix Col GP Relay CAN H CAN L Star Ground
Vbatt J1-1 7b (PS+sense),

6b (PS+)
Power Gnd J1-2 X
Brake J1-3 9
Accelerator J1-4 10
CAN H J1-5 X
CAN L J1-6 X
Pot1 Vref J2-1 6
Pot1 Wiper J2-2 5
Pot1 Ground J2-3 7,8
Pot2 Vref J3-1 2
Pot2 Wiper J3-2 1
Pot2 Ground J3-3 3,4
Motor + J3-4 12 3b (load 1)
Motor – J3-5 11 2b (load 2)
Other connections
PS+Sense 7a
PS+ 6a
PS-Sense 5a
PS – 4a
Motor Load + 3a
Motor Load – 2a
Earth Ground 1a
Switched Earth Ground 1b X
DUT Common X
Star Ground

13,14
5b (PS-sense),
4b (PS-) X

X

65

6. Understanding the Effects of Racking and System
Interconnections

Introduction
This chapter walks you through
important considerations for
arranging your test equipment in a
rack, including weight distribution,
heat dissipation, instrument accessi-
bility and operator ease of use. It also
explores ways to minimize magnetic
interference and conducted and radi-
ated noise to maximize measurement
accuracy.

How you arrange test-system
components can affect measurement
accuracy, equipment longevity and
operator ease of use and safety. This
chapter focuses on the important
decisions you’ll make if you are
building a system from rack-and-
stack test instruments or a mixture
of rack-and-stack instruments and
cardcage components, and you are
using a racking cabinet to hold
your system components. However,
many of the concepts we discuss are
applicable to bench-top systems that
are not racked.

Choosing racks and
accessories
Before you choose your rack cabinet
and accessories, you need to clearly
define the quantity and size of the
components your rack will house.
It is also important to be aware of
how users will interact with the
equipment, how the equipment will
be maintained and any special needs
such as environmental or security
considerations or the need to trans-
port your system after it is built.

To facilitate racking, most test
equipment manufacturers build test
equipment according to size stan-
dards established by the Electronic
Industries Alliance (EIA). The stan-
dard heights, widths and depths are
illustrated in Figure 6.1. Instrument
widths are usually specified as
full module width (MW) or half or
quarter MW.

Width Depth

Height

Full Module

1 MW

1/2 MW 1/2 MW

269.2 mm
(11 in) D
345.4 mm (14 in) D
421.6 mm (17 in) D
497.8 mm (20 in) D
574.0 mm (23 in) D

3/4 MW 1/4
MW

1 EIA RU

2 EIA RU

Half Module Half Module

Quarter
Module

Quarter
Module

Quarter
Module

Quarter
Module

310.4 mm (12.25 in) H

265.9 mm (10.5 in) H

221.5 mm (8.75 in) H

177.0 mm (7 in) H

1322.6 mm (5.25 in) H

88.1 mm (3.5 in) H

44.1 mm (1.75 in) H

3 EIA RU

4 EIA RU

5 EIA RU

6 EIA RU

Height
7 EIA RU

Figure 6.1. Most test instruments are a whole number of standard rack units (RUs) high and
either a full, half or quarter module wide. A full module is typically 482.6 cm (19 inches) wide.

66 6. Understanding the Effects of Racking and System Interconnections

When you calculate rack size, you
need to decide whether the system
controller (typically a computer)
and monitor also will be installed in
the rack to display test procedures
and results. If you are incorporating
a computer and monitor, will you
also need a keyboard or mouse for
operator inputs? If so, be sure to add
space for these items into your calcu-
lations, along with space for a work
surface. If there is a work surface,
consider the fact that it may prevent
the user from easily accessing any
instrument in the space directly
below the surface.

You may also want to consider
including space for accessory
drawers to provide convenient
storage for manuals, spare connec-
tors and other small accessories (see
Figure 6.2). Slide-out shelves are
useful for attaching loads and other
custom equipment, and they make
access easy.

To maximize the re-usability of your
test system, keep your future needs
in mind when you choose your rack.
In the future, you may want to add
more instruments and more switches
and accommodate bigger devices
under test (DUTs) that require more
power. To maximize your long-term
flexibility, allow at least 20 percent
extra room in your rack to accommo-
date instrument additions.

Other questions to consider:

•	What are the physical constraints
of the location where your rack will
be situated? Will the floor support
your system’s weight? Are door-
ways into the facility tall and wide
enough for the rack you are consid-
ering? Is there adequate power,
and does the room have adequate
cooling to support the additional
heat created by the system?

•	Will your system need to be moved
to its final destination? If so
consider using multiple smaller
racks and limiting total rack
weight. If you need to ship the
system to another location, also
consider using ruggedized rack
furniture with strain relief fittings
and keep shipping concerns in
mind (shipping company or airline
size and weight requirements, etc.).

•	Do you need to be able to prevent
or limit access to your system? If
so, consider a rack with lockable
doors.

•	Will you need rear access to your
equipment? If the only way to gain
rear access to your equipment is to
move your rack, you may want to
consider installing sliding shelves
instead. A sliding shelf allows you
to pull the instrument out of the
front of the rack for easier access
to the backside of equipment.

Instrument layout
When you plan the layout of equip-
ment in your rack, you will attempt
to achieve a number of objectives
simultaneously:

•	Ensure rack stability by carefully
distributing the weight of system
components in the cabinet

•	Make it easy for operators to use
the system and be productive

•	Minimize magnetic interference

•	Provide adequate power and heat
dissipation

•	Route power and measurement and
stimulus signals to the right place
as efficiently as possible

•	Minimize conducted and radiated
noise

•	Ensure operator safety

Plan your instrument layout on paper
before you start installing instru-
ments in your rack, since you will
probably change your layout multiple
times before you determine the
optimal layout.

Figure 6.2. Adding an accessory drawer to your
rack provides convenient storage for manuals,
spare connectors and other small accessories.

67
www.agilent.com/find/open

Proper weight distribution
It is important to minimize the risk
of your rack tipping over to prevent
injury to operators and damage to
expensive equipment. To achieve
the greatest stability for your rack,
keep the center of gravity low by
placing the heaviest objects—typically
power supplies and signal genera-
tors—near the bottom of the rack (see
Figure 6.3). You will have to balance
this need with the need to make
frequently adjusted equipment easily
accessible to operators.

In addition to keeping the center of
gravity low, make sure the weight of
your system is centered (front-to-back
and side-to-side) as much as possible.
You may need to mount some system
components in the back of the rack,
rather than the front, to achieve this
balance.

When you calculate your system’s
center of gravity, be sure to factor in
the weight of the heaviest DUT you
will be testing. Your system needs
to be stable with and without the
DUT in place. Also consider how
weight distribution would change if
you were to remove an instrument
from the rack for maintenance, if the
operator were to lean on the work
surface or place heavy manuals on it,
or if heavy instruments on slide-out
rails were fully extended.

If you have allowed room in the rack
for future expansion, you will have
empty spaces in the rack. To improve
weight distribution, leave some
empty spaces near the top of the rack
for future addition of lightweight
instruments and some at the bottom
to allow for future addition of heavy
instruments. Use a filler panel to
cover the front of the rack to keep
dust out of your system and help
manage airflow. Filler panels come
in the same standard heights as test
instruments (see Figure 6.1).

Keeping the center of gravity low is
especially important if you will be
moving the rack to another location
after it is assembled, because the risk
of tipping increases when you move
it. Of course, the forces acting on
your system’s center of gravity will
change if the system is tilted, so be
sure to take this into consideration
if you intend to move your system
up a ramp as you move it to its final
location. When you design your
rack, keep in mind that ramps in
industrial facilities can be angled at
up to 15 degrees, so make sure the
rack cannot tip over at that angle.
When you push the rack up the ramp,
turn the rack so the heaviest part
(typically the front if your equipment
is front-mounted) faces uphill, if
possible.

Once your system is in its final
location, you can improve its stability
several ways. You can bolt it to the
floor, to a wall or to another test
rack. If you bolt it to another rack
or to a wall, make sure you do not
disturb the airflow and cooling and
that you leave enough room at the
back of the rack for servicing equip-
ment. Some racks are equipped with
retractable stabilization feet that you
can pull out of the bottom front of
the cabinet to prevent it from tipping
forward (see Figure 6.4).

Top heavy,
poorly balanced
test system

Well balanced test
system with low
center of gravity

Figure 6.3. Well balanced and poorly balanced test systems

Figure 6.4. This rack cabinet features a
retractable anti-tip foot that improves the rack’s
stability when it is loaded.

68 6. Understanding the Effects of Racking and System Interconnections

You also can use ballast, or weights
that fasten to the bottom of the
rack, to improve rack stability. Most
racking systems offer ballast as an
option. Ballast mounted at the back
of the rack cabinet helps keep the
cabinet from tipping forward if you
extend heavy, slide-mounted devices
from the rack or if you place a heavy
object on a work surface that extends
from the rack.

Adding ballast, using retractable
stabilization feet and bolting rack
cabinets to the wall or floor provide an
extra margin of safety, but you should
not rely on these measures to compen-
sate for poor weight balance in your
rack. Always make sure the center
of gravity of your system is as low as
possible and the weight of your system
is centered as much as possible.

Instrument accessibility and
operator ease of use
If your system is fully automated, you
may be concerned about instrument
accessibility only during system
development or troubleshooting. If
your system is operated manually
or semi-automatically, an operator’s
ability to access instruments and use
them easily during testing will be
an important consideration as you
decide how to rack your equipment.

Instrument access during develop-
ment and/or troubleshooting
When they are low on rack space,
system designers sometimes “bury”
instruments inside the rack behind
other instruments or mount them
backwards or sideways in the
rack. Before you choose this tactic,
determine if you will need to access
the instrument during system
development to verify operation or
for troubleshooting, repair or calibra-
tion. If you perform periodic system
self tests to verify operation, you may
need access to the front panel of an
instrument, making “buried” installa-
tion impractical.

In some situations, reverse-mounting
(or rear-mounting) instruments in a
rack makes sense. For example, if you
place the DUT interface panel (mass
interconnect or feedthrough panels)
in front of a switching subsystem
that has the plug-in cards facing the
interface panel, you minimize rack
space, because the switchbox and
mass interconnect are in the same
plane, and you reduce wire length
from the switching to the DUT. If
the switch box you choose has cards
in the rear, you can simply reverse-
mount the switchbox using the rails
on the rear of the rack, as illustrated
in Figure 6.5. If you choose to mount
an instrument in a non-standard
manner, be sure the cooling airflow is
not disturbed.

You may be able to rear mount
shallow instruments behind front-
mounted instruments to save rack
space. This space-saving technique
can be a practical way to reduce rack
height if you have a problem with low
doors or you need to meet airline size
requirements. However, mounting
instruments in both the front and
back of a rack can make servicing
the instruments in your rack more
difficult.

Instrument access and ease of use
during testing
If you are designing a manual or
semi-automated system, you need to
ensure that the operator can reach
the necessary equipment controls
and connectors/patch panels without
straining. Decide whether operators
will sit or stand during testing and
position the work-surface height
accordingly. If a test instrument has
a display the operator needs to see,
place it at eye level or above, and if
appropriate, provide the ability to
tilt the display to reduce glare and
eyestrain.

If the operator will interact with a
computer, place the monitor where
the operator can see it easily. If the
operator needs to use a mouse or
keyboard, avoid placing these items
on the same work surface as the
DUT. Provide for left-handed and
right-handed operators by allowing a
mouse to be placed on either side of
the keyboard.

When you are planning the operator
work surface, make sure operators
sit or stand far enough away from the
rack that they do not inadvertently
hit controls with their feet.

If you plan to ship the rack to
another country, consider operator
height and local safety rules, and
make sure adequate preparations are
made for power, cooling and so on
before the rack is shipped. Obviously,
local-language instructions may be
necessary in some cases. Inadequate
preparation can sometimes cause
long delays in system deployment.

Figure 6.5. Rear-mounting the switching
subsystem reduces rack space and minimizes
cable lengths.

69
www.agilent.com/find/open

Minimizing magnetic
interference
Magnetic fields generated by test-
equipment transformers can inter-
fere with the cathode ray tube (CRT)
displays found in many computers
and oscilloscopes (newer display
types such as LCDs are far less
susceptible to magnetic interference).
If you put a power supply directly
below a scope, the magnetic field
from the transformer in the power
supply can cause the scope CRT to
waver to the point where it may not
be usable. To alleviate the problem,
move the receiving instrument away
from the transmitting instrument.
The intensity of the magnetic field
decreases as the distance from
the source of the field increases;
the amount by which it decreases
depends upon the configuration of
the source of the field and the prox-
imity to the source, but clearly, the
greater the separation between the
source and the receiving instrument,
the lesser the effect.

In some cases, magnetic fields also
can affect performance and accuracy
of instruments that don’t have CRTs.
For example, a voltmeter’s circuitry
could be susceptible to a large
magnetic field produced by a trans-
former. If you are having measure-
ment problems with an instrument,
keep in mind that magnetic interfer-
ence could be one of the causes.
Try moving the affected instrument
away from likely sources of magnetic
fields. Power supplies, fans and high-
power-consuming instruments have a
higher potential for producing large
magnetic fields.

If moving the instruments is not an
option, try adding magnetic shielding
between the different rack layers
or between the instruments. High-
permeability metal (Mu metal) is sold
for this purpose.

Vibration, especially in the presence
of a magnetic field, is a difficult
problem for system designers to
solve. Cables moving in a magnetic
field can generate current, and
charge-related noise can be caused by
internal stresses in vibrating cables
connected to a charge amplifier or
DMM. This issue is one of the big
reasons for installing a mass inter-
connect in the system. It minimizes
the relative motion between cables,
and the chance of charge movement
due to pinched cables.

Power dissipation and thermal
management
All test instruments produce heat
during operation. If you have
multiple instruments producing heat
in an enclosed rack, the temperature
can easily exceed environmental
conditions specified for your test
instruments. When this happens,

your instruments can fail prema-
turely and your measurement results
may be jeopardized. Temperature
gradients are also an issue. If one
end of the rack is ten degrees hotter
than the other end, even if the overall
temperature is within instrument
specifications, the resulting gradient
can cause unwanted thermocouple
effects or slow drift errors.

The best way to dissipate the heat
inside a rack is to increase airflow.
Installing extractor fans in the top
of the rack, as shown in Figure
6.6, improves natural convection
cooling by increasing the airflow
in the rack. The fan moves warm
air from the bottom of the rack up
and out through the vented top cap,
providing cooling to the entire length
of the rack. It is a good idea to use a
fan when internal rack temperatures
are 15°C (27°F) above ambient
temperature.

Figure 6.6. Extractor fan installed in rack

70 6. Understanding the Effects of Racking and System Interconnections

If you cannot create enough airflow
to remove the heat with a fan, you
may need to consider air condi-
tioning your rack. There are standard
NEMA enclosures that can be used
for this purpose.

When you install equipment in your
rack, do not block instrument fans or
side air holes and be sure to follow
instrument manufacturers’ recommen-
dations regarding air flow and clear-
ance around instruments. In general,
place your deepest instruments at
the bottom of your rack. If you place
a full-depth, full-width instrument
in the middle of the rack, you block
airflow to the instruments below it.

Typical top-mounted extractor fans
will move about 200 CFM (cubic feet
per minute) of air, which is sufficient
for dissipating up to 2500 W of power
inside a rack. If your system uses
more than 2500 W, you could install
additional top-mounted fans or use a
600 CFM fan in the rear rack door to
increase air flow.

If your system includes high-power
instruments like AC sources or elec-
tronic loads with their own fans, use
ductwork to vent them directly out
the back of the rack. You can make
the ductwork out of sheet metal.

The amount of power an instrument
dissipates typically is specified by
the instrument manufacturer. If that
specification is not available, you can
estimate power dissipation require-
ments from the maximum current
specification using the equation

Worst case power (VA) =
Voltage x Amperage

This calculation provides a conserva-
tive estimate of power dissipation
requirements because power in
watts, the true source of heat, is
always less than or equal to power in
VA. It is a good idea to use conserva-
tive figures to safeguard against
worst-case situations.

Many test instruments draw a fixed
amount of current. However, a
power supply draws variable current
depending on how much power it is
providing to the device it is powering.
When you calculate heat dissipation
requirements, plan around a power
supply’s maximum draw.

Routing power and signals
Once you have resolved the weight
and balance issues, calculated your
airflow and power needs and planned
for operator accessibility, you are
ready to turn your attention to how
you will get power and signals to
your instruments and your DUT. Your
goal is to route power and measure-
ment and stimulus signals to the
right place as efficiently as possible
while keeping noise to a minimum.

Multiplexing and matrix switching
Switches, or relays that route power
and interconnect system instrumen-
tation and loads to your DUT, are an
integral part of most automated and
semi-automated test systems and
some manually operated systems.
Multiplexers and matrix switches
make it possible to minimize the
number of test instruments in your
system instead of using separate
instruments for each test point.
Switches deliver power and stimulus
signals to the DUT when they are
needed and route the measurement
signals back to your test instruments.

Choosing the proper switch type and
topology will impact the cost, speed,
safety and overall functionality of
your test system. For a thorough
examination of switching in test
systems, see Application Note 1441-1,
Test System Signal Switching.

Wiring your system
Power wires radiate electronic noise
and both stimulus and measurement
signal-carrying wires are suscep-
tible to this noise, so to minimize
interference, separate power wires
from signal-carrying cables. Proper
shielding and grounding techniques
can help alleviate noise problems
(see “Grounding and shielding”
on page 72). Selecting the proper
type of cable is also important. A
double-shielded or triaxial cable with
insulation between the two shields
provides the maximum protection
against noise coupling.

In some cases, you may need to
separate signal measurement cables
(which can be sensitive to noise)
from signal stimulus cables (which
can generate noise). For example,
if your stimulus signal is a high-
frequency square wave with rapidly
changing transitions (fast edges)
produced by a function generator,
it will radiate more noise than a
square wave with slow edges or a
high-frequency sine wave, and it
would be more likely to interfere
with the accuracy of a low-level
measurement signal. If possible, keep
wires carrying high-frequency square
waves and other noise-generating
signals away from your measurement
paths to minimize interference.

For a detailed discussion of ways
to reduce noise in switch systems,
see the Application Note 1441-2,
Reducing Noise in Switching for Test
Systems.

Wiring dress and termination—Good-
quality cabling is expensive, but you
will get the best results if you buy
the best cabling your budget will
allow. Make sure the cable you select
is designed for the task you have in
mind and be careful not to exceed
the manufacturer’s ampacity rating
of the wires you choose.

71
www.agilent.com/find/open

It is a good idea to adopt a system-
atic approach to arranging and
managing your system’s cables. For
a large system, you may want to
consider using cable harnesses or
looms. For a smaller system, cable
ties may be adequate for bundling
cables. Be sure not to wrap power
cables in the same bundle as signal
cables. For all systems, decide on a
consistent method for labeling cables,
as it will simplify troubleshooting,
maintenance and future replace-
ments. On the label, include either a
reference to a look-up table or a full
description of the cable’s signal type,
connectors and purpose. It is also a
good idea to document the type and
supplier for each cable you use and
retain copies of datasheets for all
cables and connectors.

Keep your cabling as short as
possible to minimize voltage drop
and interference, leaving just enough
slack to allow you to keep it out of
the way. If your instruments are
mounted on sliding shelves or rack
slides, make sure you allow enough
slack to allow the equipment to slide
all the way out.

Wire termination devices may be
already mounted on the wires you
purchase, or you may build your own
wire terminations. If you build your
own, use gold-plated pins and match
the current rating of the pins to your
application. Gold-plated pins cost
more, but they last longer because
they do not oxidize. Ensure that the
pin and the wire both can withstand
the maximum current you plan to use
on that signal path or power path.

For RF applications, typically you
will use coaxial cable (to match the
characteristic impedance of the
application and to minimize radiated
noise) and terminate the cables with
coaxial connectors (to maintain the
integrity of the connection between
the inside of the rack and the outside
of the rack). Of course, the coaxial
signal path should also be terminated
with the proper characteristic imped-
ance to minimize signal reflections.

Strain relief—When you wire your
system, be sure to protect your
investment and minimize system
downtime by minimizing sources
of cable stress and damage, such
as vibration, extreme bending and
cutting and fraying caused by sharp
edges. If your cable needs to pass
through the rack cabinet wall, use a
gasket in the hole and support the
wire adequately along its path.

If you bend a wire back and forth
repeatedly, it will eventually break.
For wires in your system that need
to be able to move, it is important
to minimize the strain on the wires.
For example, fixturing wires tend
to move often as you connect and
disconnect your DUT. If your system
is designed for high-throughput
manufacturing test, you will need to
replace the fixturing wires regularly
and pay careful attention to strain
relief. Building strain relief into
your system cabling helps protect
both the cables and the connectors
on the test equipment. Make sure
that you support cables at regular
intervals inside the rack cabinet, so
the connectors do not bear the full
weight of the cable.

Minimizing noise
We have already discussed some
design considerations for reducing
noise, but an understanding of where
noise might originate is also helpful.
In systems designed for testing
electronic modules, the most signifi-
cant causes of noise are conductive
coupling, common-impedance
coupling, and electric and magnetic
fields. In addition, some systems
are sensitive to noise from galvanic
action, thermocouple noise, electro-
lytic action, triboelectric effect, and
conductor motion.

Conducted and radiated noise
One of the easiest paths for noise to
couple into a circuit is a conductor
leading into it, resulting in conduc-
tively coupled noise. A wire running
through a noisy environment has
an excellent chance of picking up
unwanted noise via radiation and
then conducting it directly into
another circuit. The power-supply
leads connected to a circuit are
often the cause of conductively
coupled noise. Common-impedance
coupling occurs when currents
from two different circuits flow
through a common impedance. The
ground voltage of each is affected
by the other. As far as each circuit
is concerned, its ground potential
is modulated by the ground current
flowing from the other circuit in the
common ground impedance, leading
to noise coupling.

72 6. Understanding the Effects of Racking and System Interconnections

Radiated magnetic and electric fields
occur whenever an electric charge
is moved or a potential difference
exists, and can also be a cause of
noise coupling. In a circuit, high-
frequency interference may be unin-
tentionally rectified and appear as a
DC error. Switch-system circuitry is
also susceptible to electromagnetic
radiation from radio, TV, and other
wireless broadcasts, and it is impor-
tant to shield sensitive circuitry from
these fields. If you want to make
accurate measurements of low-level
signals in a test-system environment,
you need to pay careful attention
to the details of grounding and
shielding.

It is always a good idea to have a line
filter and surge protector in the main
power distribution unit (PDU) of the
rack. Also, each instrument usually
has its own line filter, to reduce
conducted interference from the
instrument and reduce conducted
susceptibility to the instrument. But
remember, there is still some residual
noise that each instrument can inject
into the power grid. Sometimes it
becomes necessary to put an addi-
tional power filter on an individual
instrument to reduce its conducted
noise.

Grounding and shielding
Grounding and shielding are the
two primary methods for reducing
unwanted noise in a test system.
They often work together, such as
when the shielding of a cable is
connected to ground. In such cases
it is important to understand where
to ground the cable shield in order to
maximize the shield’s effectiveness.
In some cases, the solution to one
noise problem may reduce the effec-
tiveness of the solution to a different
noise problem, making it imperative
that you thoroughly understand the
noise source, method of coupling,
and noise receiver so you can make
the appropriate tradeoffs.

When you design a grounding system,
your goal is to minimize the noise
voltage generated by currents from
two or more circuits flowing through
a common ground impedance, and
to avoid creating ground loops that
are susceptible to magnetic fields and
differences in ground potential.

To accomplish these goals, instru-
ment, power and safety grounds
should all be connected as close as
possible to the DUT’s power ground
via a “star” mechanism as shown in
Figure 6.7. This eliminates ground
loops and contributes to quiet
readings.

For a detailed discussion of
grounding and shielding issues, see
Application Note 1441-2, Reducing
Noise in Switching for Test Systems
and the white paper Considerations
for Instrument Grounding.

In high-frequency systems, radio
frequency interference (RFI) also
can cause problems. To minimize
RFI, make sure your cable diameter
is suitable for the signal wavelengths
you are transmitting, terminate all
cables in their characteristic imped-
ances, keep cable lengths as short as
possible and use only high-quality
cables and connectors. For more
information, see the white paper
Proper Cable Shielding Avoids RF
Interference Problems in Precision
Data Acquisition Systems.

Safety and interlocks
It is important to protect the safety
of test-system operators, as well
as safeguarding your DUT and the
equipment in the rack itself. You
need to plan for system safety as part
of your overall system design, and
you need to comply with company,
local, national and international
safety standards and regulations that
may apply.

Install a system cutoff mechanism
that is activated by any action that
exposes the operator to potential
harm. Make sure you document
safety procedures and thoroughly
train operators to use them.

Mechanical safety
Fans are a potential source of danger
in a test system. Make sure that any
fans you use are covered with fan
guards that make them inaccessible
to human fingers. Positioning fans on
top of rack cabinets, instead of in the
cabinet wall, reduces the chance that
someone’s long hair could get sucked
in unintentionally.

Test system

Instrument commons

PS-

PS-Rem sense

Earth ground

Other commons

DUT

Analog ground

Digital ground

RF ground

Power ground

Star ground

Figure 6.7. A star ground minimizes noise and eliminates ground loops.

73
www.agilent.com/find/open

If the rack is only waist high, be
careful to consider what might
happen if a liquid is spilled on top
of the rack. To safeguard against a
rack tipping over, use the guidelines
discussed in the “Proper weight
distribution” section of this paper
(see page 67).

Electrical safety
Install a system cutoff switch (often
called an emergency off switch, or
EMO) where operators can reach it
easily. The switch should cut power
to the entire system, not just the
DUT. If the cutoff switch is used,
make sure operating conditions are
safe before you restart the system.
Label all high-voltage, high-current
and high-power devices in red, and
make it clear they are hazardous.
Devices carrying more than 42 volts
AC or 60 volts DC are hazardous.
After a power outage, latching relays
may or may not return to a safe state.
Consider what they will be control-
ling and what equipment they will be
connecting.

One key to electrical safety is
making high voltages inaccessible to
operators. If your DUT requires high
voltages or high-bias current, use an
interlock mechanism to cut power to
the DUT when the operator is able to
contact it. For example, you can use
a special fixture with a see-through
cover fitted with an interlock mecha-
nism that cuts power to the device
when the cover is opened. Look for a
power supply with a “remote inhibit”
feature that lets you remotely inhibit
the output by simply making the
connection between two points.

AC power distribution
In a big system with 10 to 14 instru-
ments, you typically plug each of
the instruments into terminal strips
inside the rack itself. The terminal
strips may get their power from a
large power distribution unit (PDU),
which is usually located in the
bottom of the rack. The PDU typically
has a single line that exits the rack
and connects to a power source on
the wall, floor or ceiling. When you
plan your system, check the AC input
current rating of individual instru-
ments and make sure the total does
not exceed the maximum current
you can draw from the terminal
strips or from your AC mains supply.
Using maximum current figures
for each instrument will help you
plan for a worst-case situation and
avoid tripping circuit breakers. The
disadvantage of planning around
maximum current draws is that you
have the potential for overdesigning
your system and wasting capacity.

If a single-phase power line cannot
handle your needs, you will need to
move to a 3-phase AC input scheme.
If you do not know what power
types are available at your site, get
that information from your facility
engineers.

If you use 3-phase equipment in your
system, make sure the instruments
in your rack share power evenly
across all three phases. For line-to-
neutral loads, you can accomplish
that by designing the rack with three
terminal strips, such that each strip
runs off one of the three phases.
Connect your test instruments so
they draw current fairly equally from
the three strips. To make this task
easier, create a list of the instru-
ments in the rack and the current
they draw, keeping in mind which
instruments consume fixed power
and which draw variable current.
For variable-draw instruments,
use the maximum current for your
calculation.

To calculate power draw for line-to-
line loading in a perfectly balanced
system, take the sum of the loads and
divide by the square root of three to
determine the current that is actually
being drawn by the phase feeding the
system.

If you have no 3-phase equipment in
your system, you do not necessarily
need to balance power evenly across
all three phases. You can just size
your cabling for the largest phase
load. You also will want to know the
actual current draw on each phase
(even if they are not balanced) so
you can balance correctly in your
facility. You could find this number
by measuring the current on each AC
line with a true RMS meter.

It’s a good idea to assess the quality
of the mains power before installing
any system. Use a power line monitor
to check for voltage spikes (surge
conditions) caused by motors, RF
spikes, dropouts and brownout
conditions (sag conditions). This
simple test can save you headaches
from non-repeatable results and also
save damage to the test equipment
itself.

74 6. Understanding the Effects of Racking and System Interconnections

Conclusion
It’s one thing to connect a PC to one
instrument, but when a rack might
contain $100,000 or more worth of
equipment, it pays to do some plan-
ning. Arranging your test equipment
in a rack to maximize measurement
accuracy, equipment longevity and
operator ease of use and safety also
takes careful planning. Whether you
are using your test system for R&D,
design verification or manufacturing
test, you need to consider a variety of
issues, including weight distribution,
heat dissipation, instrument acces-
sibility and operator ease of use, and
you need to pay close attention to
minimizing magnetic interference
and conducted and radiated noise.

75

7. Maximizing System Throughput and Optimizing
System Deployment

Introduction
This chapter discusses hardware
and software design decisions that
affect throughput, including instru-
ment and switch selection, as well as
test-plan optimization and I/O and
data transfer issues. It also discusses
ways to optimize your system as you
prepare to deploy it.

Throughput is a measure of the time
it takes to test a device or product.
Maximizing throughput is most
critical in high-volume manufac-
turing, where you have thousands of
products to test and you want to test
them as fast as possible. In high-
volume manufacturing, you measure
throughput in terms of devices per
unit time. The faster you test your
devices, the lower your manufac-
turing costs. In design validation
testing, the speed of each individual
test is not as critical, but test setup
time is important because you need
to be able to adapt to pinouts that
change often. In design validation,
you measure throughput in terms of
tests per unit time. The faster you can

validate your designs, the faster you
can get your new products to market.
In R&D, throughput is seldom an
issue because you are not likely to
repeat tests on large numbers of
devices or to perform the same test
repeatedly on a single device.

Taking the time to optimize system
throughput may require some
additional investment up front, but
the payoff in lower costs and faster
time to market makes the investment
worthwhile.

As Chapter 5, Choosing Your Test-
System Hardware Architecture
and Instrumentation, pointed out,
a test system is essentially a group
of subsystems that work together.
The hardware you choose for these
subsystems and the software you
write to make these subsystems
communicate and interact have
a huge effect on your system
throughput. If throughput is critical
in your test application, you need
to choose equipment with the
performance and features required
for fast testing and then configure it

and program it for optimum speed.
After you’ve built your system, you
can tweak instrument setups and
operating procedures to further
optimize its speed.

In general, your system first needs to
set up a test or configure the proper
stimulus and send it to your device
under test (DUT). Then your system
needs to actually make the measure-
ment on the DUT and transfer the
measurement data back to the
computer. Figure 7.1 shows typical
steps a computer-controlled system
would take to make a measure-
ment. (The steps do not necessarily
have to be executed in the order
presented.) Each of these steps takes
some amount of time to execute.
To optimize throughput, you need
to analyze how long the steps take
in your system and decide which
steps you can speed up. Depending
on your application and budget, you
may decide to work only on the steps
that have the biggest impact on your
throughput, or you may decide to
invest the time and money to elimi-
nate every unnecessary millisecond
in the entire process.

Power
supply

DUT

Switch
matrix

Switch
matrix

Stimulus
device

Measurement
instrument

BUS

Computer
2, 5, 7, 9, 11

Control commands
Measurement data

3

4 1 6 1012
8

Measurement
instrument

Stimulus
point 1

Stimulus
point 2

Stimulus
point 3

Meas
point 1

Meas
point 2

Meas
point 3

Steps
1. Tell system where to connect the stimulus
2. Wait for switch to settle
3. Tell stimulus instrument what signal to send to DUT

(parameter, range)
4. Tell stimulus instrument to send signal
5. Wait for stimulus to settle
6. Tell switch to send DUT signal to measurement instrument

 7. Wait for switch to settle
 8. Tell measurement instrument what parameter to measure and the

range in which that parameter falls
 9. Wait for instrument to process command and complete configuration
 10. Tell instrument to make the measurement
 11. Wait for instrument to process command and make the measurement
 12. Transfer measurement information to computer

Figure 7.1. Steps involved in making measurements with a typical computer-controlled system

76 7. Maximizing System Throughput and Optimizing System Deployment

In a typical test system, the steps
with the biggest negative impact
on throughput include instrument
resets, delays (wait statements)
programmed into the system soft-
ware and waveform downloads.
Power supply settling time, voltmeter
measurements and switching also
play a role. Figure 7.2 shows the
hierarchy of delays in a typical test
plan.

Obviously, if your system stops
functioning, your throughput drops
to zero. In all phases of product test
(R&D, design validation and manu-
facturing test), therefore, minimizing
system downtime is critical to
maximizing throughput. To minimize
system downtime:

•	Select instruments from vendors
you trust and choose instruments
with high mean time between
failures (MTBF) specifications.

•	Establish a good spares program:
keep backup components for your
system so that if an instrument
fails, you can quickly swap in a
replacement and restore system
functionality.

•	Perform regular maintenance on
your system and its components.
Clean fan filters regularly to avoid
heat build up (high temperatures
contribute to failures). For
more information on this topic,
see Chapter 8, Operational
Maintenance.

This chapter focuses on improving
throughput for systems designed
with rack-and-stack test instruments.
However, most of the concepts apply
to systems built with card-based
instruments (such as VXI and PXI)
as well. Card-based systems do have
features that lend themselves to
optimizing throughput. For example,
VXI and PXI backplanes have a
built-in triggering bus that makes it
easy to implement triggering schemes
that can minimize system delays.
The new LXI standard (see Chapter
16) also specifies a trigger bus, thus
bridging some of the differences
between card-based and rack-and-
stack instruments. Card-based and
rack-and-stack systems are similar
in most other regards, and you can
use many of the same techniques for
optimizing measurement speeds in
both types of systems.

Upfront design decisions
affect throughput
If you are designing a new system,
rather than optimizing an existing
system, you will have a greater
opportunity to maximize your system
speed. The system hardware and
software architectures, instruments,
switches, and I/O interfaces you
select will have a huge impact on
system throughput. For a detailed
discussion of system hardware
and software architectures, see
Chapter 4, Choosing Your Test-
System Software Architecture, and
Chapter 5, Choosing Your Test-
System Hardware Architecture and
Instrumentation.

Making hardware choices
Figuring out how fast your system
will perform measurements is harder
than it appears. For example, you
may decide to use a digitizer instead
of an oscilloscope to take advantage
of the digitizer’s higher resolution.
The digitizer may be able to sample
1000 readings very fast, but if those
readings are transferred to the PC
over GPIB, the total process could
take a relatively long time. If you
can download a decision-making
algorithm into the digitizer, you can
send a simple go/no-go result back
to the PC, which would make GPIB a
reasonable option. However, it takes
extra effort to create and download
a decision algorithm into an instru-
ment, which may increase develop-
ment time as well as “first-run” time
of the test program. You also need to
consider the relative analysis time of
a routine computed inside the digi-
tizer compared to the time required
to complete it inside the PC.

Time spent during example test

Source of time spent

Instrument
resets

5 (36)

3.5 (25)

2.7 (20)

1.4 (10)

0.7 (5) 0.5 (4)

6

5

4

3

2

1

0

Se
co

nd
s

(%
 o

f t
ot

al
 ti

m
e

sh
ow

n
in

 p
ar

en
th

es
is

)

Wait
statements

Arbitrary waveform
downloads

Power supply
settling

DMM
readings

Switching

Figure 7.2. Hierarchy of delays in a typical test plan

77
www.agilent.com/find/open

As you can see, many interdependent
factors can affect throughput. If
you are looking for test-time reduc-
tions amounting to fractions of
milliseconds, you must weigh each of
these factors carefully. Even if your
throughput requirements are not
that exacting, the hardware choices
you make can significantly affect
throughput.

One important factor to consider
when you are selecting your instru-
mentation is command processing
time, or the amount of time it takes
an instrument to “digest” and
interpret a command. Command
processing time is usually character-
ized on an instrument’s data sheet. If
you cannot find the information, ask
the instrument vendor. Command
processing times can range from
less than a millisecond to dozens of
milliseconds. If you send a command
just once to an instrument, it may not
have a huge impact on your overall
test time. But if you are sending the
command repeatedly during testing,
the time it takes can have a signifi-
cant impact on your throughput.
Note that newer model “smart”
instruments tend to have much
lower command processing times
than older models. Also note that
many cardcage-based instruments
use the PC for most processing tasks.
The time to complete these tasks is
highly dependent on the tasks being
simultaneously performed on the PC.

As you explore the opportunities for
improving your system throughput,
keep in mind that when you reduce
measurement time, you may sacri-
fice accuracy and repeatability. If
you integrate measurements over
a longer period of time you will
filter out random noise, and your
measurements will be more accu-
rate. Typically, you can improve
measurement repeatability by
averaging measurements, increasing
the number of samples taken per
measurement or increasing the

measurement sample time, but you
will sacrifice measurement speed.
If you cannot compromise accuracy
and repeatability, it does not mean
you will not be able to improve your
throughput. Measurement time is just
one factor to consider in the overall
test plan, as illustrated in Figure 7.1.

In design validation, you typically
perform a large number of different
tests, so the time you spend setting
up the test system is important.
To minimize development time,
use rack-and-stack system-ready
instruments that incorporate a high
percentage of the measurement solu-
tion you need. For example, if you
use a source with modulation capa-
bility, you don’t have to develop your
own algorithm or integrate additional
hardware to generate the required
modulation. Using instruments
with IVI-COM drivers can save you
development time. If the instrument
has an IVI-COM driver, you can inter-
change hardware without rewriting
your software, as long as you adhere
to the functionality that is specific to
the instrument class. See Chapter 3,
Understanding Drivers and Direct
I/O, to learn how decisions about
drivers affect development time.

Stimulus and measurement
instruments
To maximize throughput, consider
creating a Pareto diagram of
projected delays (see Figure 7.2) in
the system and invest your time and
money accordingly. If tests A and B
are of similar duration but test A is
performed much more frequently
than test B, then focus your program-
ming efforts, tricks and budget on
test A.

When you are choosing instruments,
pay close attention to instrument
specifications. For example, the
Agilent 33120A function/ arbitrary
waveform generator is popular
for systems applications. But its
successor, the 33220A function/

arbitrary waveform generator,
downloads arbitrary waveform files
100 times faster than the 33120A,
and many of its configuration times
are faster (and it also costs less than
the 33120A). If you have an existing
system that includes 33120A func-
tion generators, it is fairly easy to
upgrade to the 33220A because the
two instruments are programmed
similarly, and Agilent provides
documentation to help you make the
switch.

When you are reading data sheets,
pay particular attention to how
measurement speeds are specified.
Often, measurement speed specifica-
tions are related to the speed per
reading when thousands of samples
are taken, which is a data-acquisi-
tion use model. In functional test,
it is far more common to close
some relays, take a measurement,
open those relays and move on to
another measurement. In this mode,
the measurement instrument’s
single-point reading speed is most
important, and it is dramatically
slower than the fastest possible
multi-sample reading speeds. In most
cases, you will be able to look up the
single-point reading speed on the
instrument’s data sheet.

Look for instruments that have
built-in features that will reduce
the time needed for communication
overhead and post-processing. For
example, some test instruments can
calculate arithmetic mean, minimum,
maximum, and standard deviation.
(These capabilities are often called
“one-button” measurements.) When
you are analyzing multiple data
points, these statistical results are
much more meaningful than the raw
data. Using the system controller
to acquire raw measurements can
be very time consuming compared
to transferring a few measurement
results.

78 7. Maximizing System Throughput and Optimizing System Deployment

Power supplies
Your choice of power supply
can dramatically impact system
throughput, because waiting for
power supplies to settle is typically
a time-consuming element in a test
plan (see Figure 7.2). Check the
settling time specifications of the
power supplies you are considering
for your system. If you can’t find a
specific reference to “settling time”
on the data sheet, look instead for
the “programming speed,” “program-
ming response time,” or “rise and
fall time” specification. Programming
speed is defined as the amount of
time it takes for the instrument to
reach a specified percentage of the
voltage setting (typically within 0.1
percent), not including command
processing time. Rise and fall times
are typically defined as the time it
takes to get from 10 percent of the
final value to 90 percent of the final
value for the rise time, or vice versa
for the fall time. Because of the
different terminology and definitions,
you must be careful when comparing
settling times in power supplies from
different vendors.

When you are trying to boost
throughput in time-critical produc-
tion test systems, look for a multiple-
output supply that can set multiple
outputs with a single command, like
the Agilent N6700 series. Otherwise,
consider using multiple single-
output power supplies instead of
one multiple-output supply. With
multiple-output power supplies, the
instrument takes extra time to parse
commands, because you are sending
an additional parameter to indicate
which of the multiple outputs
it should use. Also, with most
multiple-output supplies, commands
sent to the various outputs are
processed sequentially, one output
at a time (this can be avoided with
the Agilent N6700 series). With
multiple supplies, one supply can be
processing a command while the next
is receiving a command, so you avoid

delays. For details on using this tech-
nique and other techniques, see 10
Hints for Using Your Power Supply
to Decrease Test Time, publication
number 5968-6359E.

Another way to reduce test time is to
choose power supplies and electronic
loads that have built-in measurement
features. With power supplies, these
capabilities let you measure the
supply’s output voltage and current.
With loads, you can measure load
input voltage and current.

A good example is testing a DC-to-
DC converter with four outputs,
where you need to measure the input
voltage to the converter and each of
the four outputs in order to fully test
the device. If you have a single DMM
to measure the voltages, you’ll need
a multiplexer to sequence through
the measurements (see Figure
7.3). In addition to the complexity
of this setup, your test program
needs to wait for the multiplexer’s
switches to move and settle for each
measurement.

DC source

DC to DC
converter

Load 1
D

C
 in

pu
ts

D
C

 o
ut

pu
ts

+
–

Load 2+
–

Load 3+
–

Load 4+
–

MUX

+
–
+
– +

–+
–
+
–
+
–

+
–

+
–

+
–

+
–

+
–

+
–

DMM+
–

Figure 7.3. Testing a four-output DC-to-DC converter with a single DMM requires a complex multi-
plexing scheme and can involve significant delays.

DC source
Load 1

DC to DC
converter

D
C

 in
pu

ts

D
C

 o
ut

pu
ts

+
–

+
–

+ s
+
–

– s

+ s
+
–
– s

Load 2+
–

+ s
+
–
– s

Load 3+
–

+ s
+
–
– s

Load 4+
–

+ s
+
–
– s

Figure 7.4. By using the built-in measurements in your DC power source and electronic loads, you
can eliminate the DMM and MUX and significantly increase your test speed.you can eliminate the
DMM and MUX and significantly increase your test speed.

79
www.agilent.com/find/open

Using DC source and loads with
built-in measurement functions
(Figure 7.4) can save significant
amounts of time. They’re already
connected to the DUT, and there
are no switching delays, so both
the setup and test phases are much
faster. Note the use of remote sensing
here. Although it isn’t required, using
remote sense is generally a good idea
because it provides regulation and
measurement at the DUT rather than
at the loads or the DC source.

With no need for switching, you’ll
benefit from faster tests, greater
reliability and simpler configurations.
This same approach works well for
measuring current, and it eliminates
the current shunts you’d otherwise
need.

Using power supplies that incorpo-
rate a feature known as downpro-
gramming can significantly reduce
test time, particularly when you need
to set multiple voltage level settings.
Without downprogramming, the
capacitor in the supply’s output filter

(or any load capacitance) can take
seconds or even minutes to discharge
when you reduce the output voltage
level (the lighter the load, the longer
it takes).

Downprogramming uses an active
circuit to force the output down to
the new level within a matter of milli-
seconds in most cases. This circuit
kicks in automatically whenever the
voltage level you set (either manually
or programmatically) is below the
present output level. The down-
programming rate is fixed in most
supplies, but some offer program-
mable downprogramming.

In time-critical tests, it’s a good idea
to watch out for downprogramming
delays. Because programming up is
typically faster than programming
down, try to sequence multiple tests
in such a way that each consecutive
test is at the same or higher voltage
level as the previous test. See page 81
for more information on test
sequencing.

Switches
Switches, or relays that interconnect
system instrumentation and loads
to your DUT, are an integral part of
most test systems because they allow
you to use a minimum number of
stimulus and measurement instru-
ments to test multiple points on
your DUT. If your test plan involves
lots of switching, switch speed will
have a big impact on your system’s
throughput, so the type of switches
and the switch topology you choose
are important. For a thorough exami-
nation of switching in test systems,
see Application Note 1441-1, Test
System Signal Switching.

From a system throughput stand-
point, the most important switch
parameter is settling time, or the
time it takes to change states from
open to closed and vice versa. Figure
7.5 shows the different actions and
the relative times required for a
relay to be closed, a measurement
to be performed and for the switch
to reopen and be ready for the next
measurement.

Settling safety margin

Ready to
switch again

Coil risetime delay

Switch bounce
safety margin

Switch timing

Switch
bounce

Mechanical
delay

Mechanical
delay

Time

Switch drive signal

Measured signal

Open
command

Source settling
and input settling

Perform measurement

Parse

"Close"
low-level
command

Coil falltime delay

Measurement trigger

Measurement complete

Data to buffer

Figure 7.5. This diagram shows what happens when you tell a switch to close, take a measurement,
and then reopen. The “switch drive signal” represents the actual voltage that causes the switch to change
states. The resulting “measured signal” is connected from the DUT to the measurement instrument.

80 7. Maximizing System Throughput and Optimizing System Deployment

Electromechanical switches such
as reed and armature relays are
common in low-speed applications.
They are capable of switching high
voltage and current levels, but they
are limited to switching rates of
dozens of channels per second for
armature relays up to hundreds of
channels per second for reed relays.
Reed relays are excellent choices to
connect measurement instruments
and low-current stimulus to your
DUT. They are relatively fast (see
Table 7.1), although they can have a
higher thermal offset voltage than
armature relays. Armature relays
are slower, but you can use them for
higher current loads. When you use
armature relays, group your tests so
the relays stay connected to perform
as many readings as possible at one
time.

Electronic switches, such as field-
effect transistor (FET) and solid-
state relays, are frequently used in
high-speed applications. (Typically
for voltage or temperature measure-
ments). However, some FET elec-
tronic switches cannot handle high
voltage or current, and they must be
carefully protected from input spikes
and transients. Check the electronic
switch ratings carefully.

Switching topologies can be divided
into three categories based on their
complexity: simple relay configura-
tions, multiplexers and matrices.
The best one to use depends on the
number of instruments and test
points, whether connections must be
simultaneous or not, cost consider-
ations and other factors. Typically,
the type of relay you choose has a

bigger impact on speed than the
switch topology you choose, unless
you factor in the time required for
reconfiguring a switching system
(which, as we noted earlier, is more
critical in design validation applica-
tions.) If you use a switch matrix,
you will be able to quickly and easily
expand and reconfigure your system
as your test needs change. Expanding
and reconfiguring systems that use
multiplexers typically is more time
consuming.

A matrix arrangement of reed relays
provides an excellent way to allow
any instrument to be connected to
any pin on your DUT, and it permits
easy expansion as you add new
instruments to your system or more
pins appear on your DUT. Matrices
use more relays than multiplexers, so
they tend to cost more. If you don’t
need to connect multiple instruments
to any pin, a multiplexer is a suit-
able solution. If you have a 1 x 20
multiplexer for example, you can take
a test instrument and connect it to 20
pins, but you can’t hook anything else
to those 20 pins. With those same 20
relays in a matrix, you can connect
four instruments to five pins in any
combination.

If you want the ultimate in
throughput and your budget is not
limited, you can use multiple test
instruments instead of a switching
scheme for making measurements on
multiple test points. With multiple
instruments, you can set each to
the needed range and eliminate the
time spent on configuring the test
instrument range, as well as the time
required for switches to open and

close. In some cases it is worth the
extra money for the test time you
save.

Controller issues
Unless your PC is ancient, its
processor speed is not likely to
be a significant factor in your test
throughput. Typically, issues associ-
ated with stimulus and measure-
ment instruments, power supplies,
switches and test software play a
much bigger role in determining
system speed. Your PC is not in
control of data collection speed, and
faster PCs don’t necessarily collect
data any faster. The PC’s interface to
your test system (GPIB, LAN, USB,
FireWire, VXI or PXI) will certainly
impact data transfer time, but that
is not dependent on PC processor
speed. If you are using a LAN or USB
interface, we recommend using the
highest speed interface and switches/
hubs available.

Processor speed is a factor only
if you are relying on your PC for
analyzing data and if you are using it
for your software development. You
want to use the fastest PC available
when you are compiling programs,
but of course you do not have to
do your development work on the
same computer you use to run your
system.

Designing your test plan for
speed
Many test programs spend most
of the time waiting. Even if you
have selected the fastest-available
hardware for your system, software
issues can slow your test-system
throughput significantly. While you
can tweak your test-system program-
ming after your system is complete
(see “Fine-tuning your system for
speed” on page 84), you will achieve
better throughput if you design your
test plan up front to optimize test
sequencing and minimize delays.

Table 7.1. Relay comparison chart

	 Armature relay	 Reed relay	 Solid-state relay
Switch speed	 50/s	 1000/s	 1000/s
Contact resistance	 Low	 Very low	 High
Life	 1 million	 10 million	 >10 million
Typical failure mode	 Fails open	 Fails open	 Fails shorted
Typical max input	 250 V/2 A	 100 V/100 mA	 250 V/10 A

81
www.agilent.com/find/open

Optimizing test sequencing
In most test systems, single-
instrument measurement times
have a smaller impact on overall test
time than the test flow (execution
sequence) you choose when you are
designing your test plan.

In a production environment, first
arrange your test plan so the system
can find DUTs that are destined to
fail as soon as possible. If a partic-
ular DUT frequently fails a certain
test, move that test to the front of
your test program. Ideally, of course,
you should feed reports of persistent
DUT failures back into R&D or
production engineering so they can
be resolved permanently. Agilent
offers a toolset, Fault Detective
Diagnostic Solutions, to help with
this process. Fault Detective helps
you optimize throughput by quickly

diagnosing functional failures in
manufacturing and by finding redun-
dancies in your tests. This toolset
also helps you maximize quality by
identifying gaps in your test process.

Next, when you are ordering your
tests, minimize the number of times
the stimulus, DUT and measuring
instrument change states—particu-
larly those that take a long time—by
organizing the program’s execution
sequence. Start by looking for tests
that leave the DUT in the desired
state for the next test. If the DUT
needs to be turned off for the start of
a test, for instance, try to sequence a
preceding test that leaves it off. If a
particular test requires that the DUT
is warmed up, place it later in the
sequence and use a system timer to
guarantee the DUT has been on long
enough. Although they are not always

feasible, these techniques can yield
big improvements when you can use
them.

The program sequence shown in
Table 7.2 measures voltage or current
on three different DUT test points
under three different sets of input
conditions. In this case, the ambient
temperature setting is used as an
example of a stimulus to the DUT.
The temperature changes for each test
point, and the measurement setup
must also change to make the required
voltage and current measurements.
Each change adds time to the test
program, reducing system throughput.
For example, if you are using a DMM
and you change the measurement
function, the DMM reconfigures the
hardware and retrieves different
calibration constants before making a
measurement.

Table 7.2. Typical test sequence

			 Measurement setup	
 Program step	 Input conditions(stimulus to DUT)	 (to measure signal out of DUT)	 DUT measurements taken
	 1	 Set input condition 1 (e.g., amb. temp. = 0 degrees C)		
	 2		 Prepare measurement setup 1 (e.g., voltage)	
	3			 Test point 1 voltage
	 4	 Set input condition 2 (e.g., amb. temp. = 25 degrees C)		
	 5			 Test point 1 voltage
	 6	 Set input condition 3 (e.g., amb. temp. = 55 degrees C)		
	7		 Prepare measurement setup 2 (e.g., current)	
	 8			 Test point 1 current
	9	 Set input condition 1 (0 degrees C)		
	 10		 Prepare measurement setup 1 (voltage)	
	 11			 Test point 2 voltage
	 12	 Set input condition 2 (25 degrees C)		
	 13			 Test point 2 voltage
	 14	 Set input condition 3 (55 degrees C)		
	 15		 Prepare measurement setup 2 (current)	
	 16			 Test point 2 current
	 17	 Set input condition 1 (0 degrees C)		
	 18		 Prepare measurement setup 1 (voltage)	
	 19			 Test point 3 voltage
	 20	 Set input condition 2 (25 degrees C)		
	 21			 Test point 3 voltage
	 22	 Set input condition 3 (55 degrees C)		
	 23		 Prepare measurement setup 2 (current)	
	 24			 Test point 3 current

82 7. Maximizing System Throughput and Optimizing System Deployment

If you organize the program to
minimize changes to the stimulus
conditions and measurement setups,
overall test time is reduced. Note
that the sequence shown in Table 7.3
provides exactly the same number
and type of DUT measurements
under exactly the same set of input
conditions as the previous sequence,
but the overall number of program-
ming steps has been reduced from 24
to 14. Also, the number of stimulus
changes has been reduced from 8 to
2, while the measurement setup has
gone from changing back and forth 5
times to changing just once.

Organizing nested loops
Structure the basic test flow so that
slow operations like setup, DUT
connections and temperature settings
are in the outermost loop. Nest faster
operations like one-button measure-
ments in lower-level loops. Place your
fastest operations in the lowest-level
loop. You can use a test flow diagram,
as shown in Figure 7.6, to get a better
conceptual understanding of the
test plan and prevent wasted time
in nested loops and poor use of DUT
connects and re-connects.

Test flow diagram — nested programming loops

Loop 1

Contains stimulus conditions that take a long time
to change or set up, for example:

Step through a variety of DUT temperatures

Loop 2

Contains test variables that take less time
to change or set up than those in loop 1, for example:

Step through a sequence of high and low DUT bias
voltage combinations

Loop 3

Contains test variables that take the least time
to change or set up, for example:

Make a DUT voltage measurement

Figure 7.6. To minimize overall test time, structure test loops so that the most time-consuming
operations are performed the fewest number of times.

Table 7.3. Test sequence optimized for speed

 			 Measurement setup	
 Program step	 Input conditions (stimulus to DUT)	 (to measure signal out of DUT)	 DUT measurements taken
	 1	 Set input condition 1 (0 degrees C)		
	 2		 Prepare measurement setup 1 (voltage)	
	3			 Test point 1 voltage
	 4			 Test point 2 voltage
	 5			 Test point 3 voltage
	 6	 Set input condition 2 (25 degrees C)		
	7			 Test point 1 voltage
	 8			 Test point 2 voltage
	9			 Test point 3 voltage
	 10	 Set input condition 3 (55 degrees C)		
	 11		 Prepare measurement setup 2 (current)	
	 12			 Test point 1 current
	 13			 Test point 2 current
	 14			 Test point 3 current

83
www.agilent.com/find/open

Using triggering
In typical test routines, it is common
to apply a stimulus to a DUT, insert
a delay (wait statement) in the
system software to give the stimulus
instrument and DUT time to stabilize
and then instruct a test instrument
to take a measurement on the DUT.
However, the length of the required
delay is typically a guess. Instead
of adding delays to a test routine to
assure that enough time has elapsed
for the stimulus and DUT to stabilize,
use triggering from the stimulus
instrumentation (and sometimes
from the DUT itself) to initiate a
reading as soon as possible, espe-
cially if wait time delays comprise
a significant proportion of your test
time. Also, once a triggered sequence
has been started, it is possible to
make other measurements while
waiting for the triggered measure-
ment to finish.

You can use triggering built into a
VXI or PXI backplane or with point-
to-point wiring in a rack-and-stack
system. In a rack-and-stack system,
you need the right cables, the right
connectors and a strategy for what is
going to trigger what. In a VXI or PXI
system, triggering is easier to imple-
ment because you don’t have to do
any special wiring. In LXI systems,
the LXI Class A trigger bus provides
equivalent triggering capability to
LXI/PXI.

Managing wait times
When you are writing your test-
system software, you can minimize
delays by overlapping wait periods
within specific tests. Here’s a typical
sequence:

•	Apply a load to the DUT or set up
its programmed state and wait for
DUT output to settle

•	Connect relays to engage measure-
ment equipment and wait for
relays to close

•	Set up measurement instrument
and wait for setup to complete

•	Initiate measurement and wait for
measurement to complete

•	Disconnect relays

•	Turn off power source

•	Wait for DUT output to settle

Each step usually involves a wait
while the action completes. In
addition, most DUTs need time to
stabilize after power is applied or
a load condition has changed. By
separating the programming and
wait stages, you can rearrange the
test to program one instrument while
waiting for another:

•	Apply load to the DUT

•	Connect relays to engage measure-
ment equipment

•	Set up measurement instrument

•	Wait for the longest of all previous
actions to complete:
— Relays to close
— Measurement instrument to settle
— DUT output to settle

•	Initiate measurement

•	Wait for measurement to complete

•	Disconnect relays

•	Turn off power source

•	Wait for DUT output to settle

Overlapping the wait periods mini-
mizes overall delays. While the DUT
is settling, the test program is busy
programming the relays and setting
up the measurement instrument.

To implement an overlapped wait,
use a common or global timer. Each
programming routine that sets up
an instrument or DUT can tell a
global timer how long each action
will take; this identifies which action
requires the longest wait. Then,
when a measurement or other test
requires that the previous commands
be completed, a call to a single wait
function will wait until the global
timer expires before continuing:

•	Apply load to the DUT

•	Connect relays to engage measure-
ment equipment

•	Set up measurement instrument

•	Wait for global timer

•	Initiate measurement

•	Wait for global timer

•	Disconnect relays

•	Turn off power source

With this approach, the test does
not have to wait any more than is
absolutely necessary for instru-
ment setup, and the programming
is simpler, too. Other techniques
for reducing software delays are
discussed in “Fine-tuning your
system for speed” on page 84.

Programming tips
for fastest throughput

•	 Graphical languages are not opti-
mized for speed, so use a textual
programming language. For fastest
throughput times, write your test
program in Visual C++ or C#.

•	 Avoid the indiscriminate use of the
reset command (*RST) to return
test instruments to a known state
after a measurement. It is best to
place resets at the beginning of a
test program to initialize the hard-
ware the first time the program is
run, then to manage the instrument
states carefully so that they are in a
benign state (equivalent to the reset
state) at the end of the program.

•	 Use binary data format when
transferring large amounts of
measurement data.

•	 Do not use SLEEP statements
for instrument-specific timing
(consider the operation complete
command, *OPC?, the wait
command *WAI, and READ state-
ments instead).

84 7. Maximizing System Throughput and Optimizing System Deployment

In some test systems, I/O speed is not
a major determining factor in overall
throughput. This is especially true
in RF systems, where the network
analyzer or spectrum analyzer
may take some time to complete a
measurement. However, in systems
that rely on unprocessed data, or
when real-time control is important,
your choice of I/O for the connection
between your computer and your
test system hardware can have a big
impact on the overall test time.

While high-speed LAN and USB have
much higher throughput than GPIB,
the serial nature of these interfaces
results in performance that may be
similar to GPIB for highly transac-
tional operations in which you are
not waiting for the instruments. The
extra cost to use gigabit LAN and Hi-
Speed USB is relatively low and will
result in noticeable speed improve-
ments. Note that a LAN will run at
its fastest if you make a direct socket
connection.

Connection to a card-based system
such as VXI or PXI should usually
be done with a fast interface such
as FireWire or MXI, as the register-
based cards generally have minimal
processing capability on-board and
count on a fast interface for good
performance.

Table 2.1 in Chapter 2 showed the
relative speeds for various operations
for a stimulus instrument having
GPIB, USB and LAN interfaces. As
you can see from that table, the
instrument’s internal speed clearly
dominates setup changes, making
I/O choices seem moot, but download
speeds are much better with LAN
and USB when large amounts of data
are involved.

For more information about I/O
and its effect on system throughput,
see Chapter 2, Computer I/O
Connectivity Considerations, and
Application Note 1475-1, Modern
Connectivity—Using USB and LAN
Converters.

Keep in mind that if your instru-
ment’s throughput is slow, you are
not going to get greater throughput
by changing to a faster I/O interface.
You can improve your throughput
by minimizing the number of
GPIB transactions you send. When
possible, send multiple GPIB
commands at one time. This reduces
bus turnaround times and allows
the instrument, in some cases, to
operate on the commands as quickly
as possible.

The character format you use to
transfer data can also affect the
data transfer rate. You can choose
from a variety of general formats,
including character string, ASCII, or
binary. Binary code is handled as
bit streams, typically in block-length
message units. These message units
are more compact than those made
up of string and ASCII characters
and therefore they can be transferred
more quickly.

For example, when you are down-
loading a data file for an arbitrary
waveform to a function generator,
downloading floating-point values
(a character string) is slower than
downloading binary values, but using
floating-point values is more conve-
nient when creating the arbitrary
waveform. Here, you need to decide
which is a higher priority, faster
data transfer (binary), or ease of use
(floating-point values in the form of a
character string).

Fine-tuning your system
for speed
Whether you are turning on a new
system or fine-tuning an existing
system, there are a number of
techniques you can use to improve
throughput. Relatively small
adjustments to system software,
instrument setups and operating
procedures can help you optimize
your system speed.

Minimize delays
As Figure 7.2 noted, delays (wait
statements) programmed into system
software typically cause systems to
run at suboptimal speeds. When you
run a test program there are some
operations — such as measuring
a complex signal or moving data
to an array — that take additional
time to complete before the next
command can be executed. If these
operations do not complete before
the next command in your program
is executed, errors can occur
and the program may halt. When
debugging test routines, program-
mers frequently “fix” the problem
by programming in a delay after
the operation and before the next
command. This is fine as a temporary
fix for correcting an error, but it is
important to remove the delays, or
at least to make them as short as
possible, once you find the real cause
of the measurement problem. Leaving
unnecessary delays in a program
slows down the overall system
throughput.

An alternative to using a delay is to
use system-level control commands
such as *OPC? (operation complete)
to inform the control software that
an operation is complete, which is
especially useful for variable-length
operations. Many instruments are
IEEE-command compliant which
means they are able to use the

85
www.agilent.com/find/open

*OPC and *OPC? commands. Using
*OPC? at the end of a command tells
the instrument to return a +1 in
response to the query as soon as the
instrument command has finished
executing. The next command in
the program sequence can execute
without any unnecessary delay.

You also can use SRQs (GPIB service
requests) and IRQs (Windows inter-
rupt requests) to minimize delays
in your test software. The interrupt
structure eliminates the necessity to
conduct a poll or a loop waiting for
something to happen. Such loops are
time-consuming to write and slow to
execute. With an SRQ or an IRQ, the
hardware tells the control software
when it is ready to have its data read
(similar to a trigger).

Minimize state changes
“Designing your test plan for speed”
on page 80 discussed ordering tests
to minimize state changes. If you
optimized the order of your tests
during the design phase, you may not
need to tweak it after your system
is up and running. If you are fine-
tuning existing system software that
was not written with speed in mind,
you may find many opportunities to
improve your throughput by reor-
dering tests. Range, frequency and
function changes are relatively slow
and can interfere with fast tests. To
compensate, arrange your tests such
that tests involving different param-
eters or different ranges are grouped
rather than intermixed. It is also
helpful to pick a range that gives the
needed resolution for most measure-
ments and then keep it there. If
you need to test multiple ranges or
multiple parameters and your budget
allows, you can use multiple test
instruments and set each to a specific
range or parameter.

Instrument-specific tips
To maximize throughput, make
sure your test instruments are
configured for speed. The following
suggestions apply to many of today’s
instruments:

•	Make sure you are using the
latest version of the instrument’s
firmware. Firmware upgrades
sometimes include significant
measurement speed enhancements.

•	Turn off the display if it isn’t
needed. Updating the display slows
the reading time.

•	Turn off all math functions or
other data processing, unless using
it allows the instrument to send a
single pass/fail result instead of a
stream of data.

•	Set autozero to “once” or “off,” as
this feature can double measure-
ment time. However, do this only if
the temperature drift in the system
is minimal. Otherwise, an autozero
should be performed periodically.

•	Use the lowest-level commands you
can. Instead of using “measure?,”
use “config” “init” and “fetch?.” You
do have to pay attention to where
and how your readings are stored
when you use these commands.
For example, the Agilent 34401A
multimeter treats “read?” and
“init” followed by “fetch?” exactly
the same except for where it stores
the readings. INIT/FETCH buffers
the readings, whereas READ places
them immediately to the output
buffer. By omitting this extra
buffering step, you can get your
reading to your computer faster.

•	Use the fewest digits of resolution
needed for the required accuracy.

•	Avoid using auto-range. Define
the expected value of a measure-
ment so the instrument spends
less time searching for the proper
range. Bear in mind, though, that
a malfunctioning DUT could result
in a reading outside of the selected
range. Your program must be
able to react to overload readings
correctly.

•	Whenever possible, use preset
states that can be used to recall
instrument state setups.

In addition to the general techniques
listed above, here are specific tech-
niques you can try with different
types of test instruments.

Function generators
•	Configure your setups in advance

and store them into memory loca-
tions. Instead of sending multiple
commands to configure the instru-
ment, you can recall the instru-
ment state with a single command.

•	When downloading arbitrary wave-
form data, send it in binary format
rather than ASCII. Download
the smallest number of arbitrary
waveform points you can.

•	Consider using modulation to
respond to your system (AM, FM,
PWM, PM or FSK). If you need the
generator to respond to something
else in your system, rather than
reading a value and reconfiguring
the function generator, see if you
can use a control signal or even a
conditioned signal as an external
modulation signal.

86 7. Maximizing System Throughput and Optimizing System Deployment

Counters
•	Use ASCII format for fastest

throughput (note: this is different
from other instruments)

•	Select the trigger level instead of
using auto level

•	Use the auto arming mode

•	Disable printing operation

•	Define the trigger command so the
fetch command does not need to be
sent for every measurement

•	For some measurements, a counter
may produce readings in which the
last few digits are not stable. This
can slow a test if a human operator
needs to discern the difference in
readings. Truncating the last digits
will produce a more understand-
able display, but some tests require
that extra resolution. Have the
counter calculate the arithmetic
mean if you require high resolution
and a stable reading or use a limit-
testing mode.

Digital multimeters
•	When using a scanning meter

such as the Agilent 34970A, wire
adjacent channels so that the DMM
doesn’t have to switch modes or
ranges

•	Select the shortest channel delay
(zero)

•	Turn off scaling

•	Turn off alarms

•	Use the fast filter

•	Turn off T/C (thermocouple) check.
Some scanning meters will check
for the existence of a thermocouple
by looking for a short circuit before
attempting to read the thermo-
couple voltage.

•	Shield the measurement setup
to reduce noise pick-up from the
operating environment. Shielding
may allow you to make measure-
ments with shorter measurement
times (aperture) or with less
filtering and still achieve sufficient
noise rejections to obtain the
required accuracy.

•	Try to make all readings with the
DMM “LO” terminal connected to
circuit low. DMMs have fairly large
values of capacitance between “LO”
and earth which must be charged
(increases settling time) when you
make floating measurements.

Scopes and digitizers
•	If you are importing raw data, use

binary transfer mode. Specifically,
use byte or word formats. Word
format is more accurate but
requires twice as much data to be
sent over the bus. Some scopes
produce more than 8-bit resolu-
tion, but many acquisition modes
produce only 8-bit data. In these
cases, transferring word versus
byte data will take twice as long
and not provide any additional
resolution. It is important to know
how and when the instrument
produces extra resolution.

•	Capture only as much data as you
need to analyze.

•	Turn off special features such as
mask test, jitter analysis and FFT
functions if they aren’t needed.

•	Make sure you have an adequate
trigger rate, and use the fastest
sweep speed (timebase scale) that
is consistent with your applica-
tion. Long acquisition times
and/or slow trigger rates can limit
your throughput if your analysis
program is very fast.

Power supplies
•	If your power supply has list mode,

use it to store complete instrument
setup states and recall them with
a single command, rather than
sending a long series of configura-
tion steps.

•	Use the built-in measurement
capabilities.

•	Use power supplies with downpro-
gramming capability.

RF/microwave sources and analyzers
•	Agilent application notes offer

many tips and tricks can be used to
speed up measurements with RF/
microwave sources and analyzers.
See www.agilent.com/find/open.

Conclusion
To maximize system throughput, you
need to choose the right equipment
and program it for optimum speed.
The system hardware and software
architectures, instruments, switches,
and I/O interfaces you select have a
huge impact on system throughput.
If you carefully evaluate the complex
interplay of the hardware and soft-
ware elements of your test system,
you will find many opportunities
for improving the speed with which
your system performs measurements.
After you’ve built your system, you
can tweak instrument setups and
operating procedures to optimize
speed. The time you spend doing
so will help lower your costs and
accelerate your time to market.

87

8. Operational Maintenance

Introduction
This chapter examines important
tasks and decision to consider as
your system is put to use. It covers
issues related to worldwide deploy-
ment, calibration, diagnostics and
repair, cleaning, upgrades and
expansion.

Once you’ve created and debugged
your test system, you will be putting
it to use. But even the best-designed
system requires routine calibration
and maintenance, and will occasion-
ally fail. Planning for such eventuali-
ties will help to reduce the system’s
downtime.

The issues most often encountered:

•	Worldwide deployment
considerations

•	Calibration

•	Diagnostics and repair

•	Cleaning

•	Upgrades and expansion

Worldwide considerations
Systems are sometimes shipped from
country to country as needs change
or manufacturing lines are moved. If
you are building a system that might
be transported elsewhere, you need
to account for the difference in line
voltage and line frequency, both from
the standpoint of equipment power
input and changes to cooling fans
that may be required. In addition,
there are ergonomic considerations
you should think about because of
differences in culture or physical
characteristics of the operators who
will use the system.

Power
Your system is composed of
instruments, power supplies and
computing equipment that could all
be required to run on different line
voltages and frequencies. If your
system will travel from country

to country, you must plan for the
changes in voltage or it will be a
tedious job changing the equipment’s
fuses and input switches. Some
older equipment must be removed
from the system and have its top
covers removed in order to reach the
internal switches. If possible, choose
equipment that runs from 90-252 V
(to handle Japan’s 100 V lines at low-
line and Europe’s 240 V lines at high-
line) without requiring changes to
switch settings or fuses. Information
on the most common line voltages,
power plug styles and other useful
data for various parts of the world is
available in Electric Current Abroad,
a free publication from the U.S.
Department of Commerce at
www.ita.doc.gov/media/Publications/
pdf/current2002FINAL.pdf.

Another useful item to consider
when shipping systems from country
to country is a power distribution
unit (PDU). These devices can
convert 3-phase inputs into line-to-
neutral or line-to-line voltages, and
they also can detect low- or high-line
conditions. They sometimes can be
connected to uninterruptible power
supplies, too. A good PDU will also
have an emergency off (EMO) switch
input, allowing the operator to shut
off all or some of the power in an
emergency. Figure 8.1 shows typical
wiring for a PDU that is used in many
Agilent systems.G

T1

T2

T3

N

10A

10A

LL1

1

2

3

4

5

6

7

8

9

10

NEU

1 NEU

NEU

Grn
1
2

3
4

7

8
5
6

1
2

9

3
4

J1 J2

J2

J3
J4

0

1

(A)

3

4 01

5 01

6 01

7 01

8 02

9 02

10 02

11 03

12 03

13 03

14 NEU

16 NEU

LL2

NEU

GRD

Yel

Mains
disconnect

M
ai

ns
 in

pu
t

Outputs enabled switch

Emergency shutdown
(EMO) switch

Branch in Branch out

Line/EMO error indicator

Outputs enabled
indicator

4-pole
contactor

Control
board

Outlets/
receptacles

Circuit
breakers

CB1-CB10

Output
terminal block

Figure 8.1. A typical AC power distribution unit.

88 8. Operational Maintenance

Cooling
Fans are another problem area when
line voltage varies. A 240 V fan may
work when operated at 120 V, but
at a much lower speed. Thus, the
airflow may no longer be sufficient to
cool the system. Conversely, a 120 V
fan may burn up when connected to
240 V. It can be a nuisance to replace
the fans every time the system is
shipped from country to country. But
fans that can be operated from any
line voltage are produced in smaller
quantities and are thus much more
expensive than single-voltage AC
fans.

DC fans, though, can be an excel-
lent choice for systems that must
be moved often. A small, fixed 12
V or 24 V DC power supply with
universal AC input (i.e., 100-240 VAC)
can be installed in the system and
connected to the DC fan(s). Other
advantages of DC fans are:

•	More control over airflow and
noise. The speed of the fan is
directly related to the input
voltage. A 24-volt DC fan can
typically be operated between 12
and 28 volts DC. At 12 volts DC,
the fan will operate at half speed,
producing less air and less noise.

•	The life expectancy of a DC fan
is higher than that of a compa-
rable AC fan, since DC fans are
many times more efficient. The
correspondingly low heat dissipa-
tion reduces the thermal load on
the bearings, thereby increasing
lifetime.

In non-air-conditioned factories,
temperatures sometimes may exceed
the ability of simple fans to keep
the instruments operating within
their specifications. In this case,
consider a dedicated air conditioner
for the system. NEMA enclosures are
available for a wide variety of rack
sizes. These completely enclose the
system, and provide a way to attach
air conditioner intake and exhaust.
Appropriate ductwork must also be
added to the factory. See
www.nema.org.

Line frequency
The frequency of AC line voltage
varies in different parts of the world.
In the U.S., 60 Hz is standard. In
many other countries, it is 50 Hz.
While this won’t affect most modern
power supplies, it can certainly affect
signal measurements. It is common
to take low-noise DMM readings
with a “1-line-cycle” integration
time. At 60 Hz, this is 16.667 ms.
At 50 Hz, it is 20 ms. Some DMMs,
such as Agilent’s 34401A, automati-
cally adjust their integration time
based on internally measured line
frequency. Others must have this
information programmed into them.
It is important to set your DMM
correctly based on line frequency.

At lower frequencies, the magne-
tizing current of transformers and
motors can go up, even to the point
of saturating the core. This can
cause nonlinear magnetic fields and
overheating of the core, especially
at 47 Hz, creating a situation where
products designed in a 60 Hz envi-
ronment can cause problems in other
parts of the world.

Logistics and ergonomics
The doorways in many older
European buildings are short, and
a 2-meter rack may not fit through
the doors. Taller racks also require
larger aircraft to transport them. If
you build tall systems, your shipping
costs may be significantly higher over
the life of the system if it is moved or
shipped frequently.

In some Asian countries where real
estate is in scarce supply and space
is at a premium, facility aisles and
hallways are extremely narrow. It
may be difficult or impossible to
move a deeper- or wider-than-normal
system to its intended location. Once
positioned, it could be difficult to
open front or rear doors.

The average population height varies
country-to-country, too. Use care
to place keyboards and monitors at
an elevation that is not too high for
shorter operators. It is also a good
idea to provide keyboard/mouse
trays with adjustable heights and
provisions for left or right-handed
operators. Your safety department
can provide you with up-to-date
guidelines for ergonomic standards.

89
www.agilent.com/find/open

Calibration
Most electronic instruments require
periodic calibration that is traceable
to a government standards agency
such as NIST (National Institute of
Standards and Technology) in the U.S.
This requirement guarantees that
measurements meet their published
accuracy specifications. Calibration
is not the same thing as diagnostics,
which are simple tests to verify that
the instrument is operating and
taking measurements that are at
least close to what they should be.
Diagnostic tests and fixtures are
discussed in the next section.

It may seem logical to build calibra-
tion fixtures that would allow your
system to be automatically calibrated
without having to remove equipment.
Unfortunately, such fixtures would be
prohibitively expensive. Calibration
requires use of components that meet
stringent specifications under closely
controlled conditions of temperature
and humidity. Oil-baths containing
“standard” resistors at controlled
temperatures, frequency-measuring
equipment that connects to the NIST
cesium-beam frequency standard and
the like are not easily contained in a
removable fixture.

There are three ways of assuring that
a test system is calibrated:

•	Have an in-house calibration lab
perform calibration either in the
system or by removing instru-
ments, calibrating them and
returning them to the system

•	Hire a firm that provides calibration
services at the location of your
system

•	Swap instruments with calibrated
spares, then send the replaced
units out for calibration

Whichever plan you use, it is essen-
tial to track the date of each instru-
ment’s last calibration, and to set up

a method for notifying appropriate
personnel when the next calibration
due date arrives. You could simply
place a dated sticker in a conspicuous
place on the instrument whenever it
is calibrated (see Figure 8.2), and have
someone check dates periodically, or
you could program the system with
“due” software that notifies appro-
priate personnel automatically.

LOVELAND STDS LAB
17025

DD MM YY BY/NO.

CAL

DUE

Figure 8.2. Cal sticker

In addition to regular calibration,
keeping a log is a good practice.
It’s helpful to be able to correlate
manufacturing anomalies to the
particular operator, time of day,
calibration period, run number and
to many other manufacturing
variables. Before you build that test
system in Germany for shipment to
Thailand, for example, try to answer
these questions: Do I have the same
calibration system in both places? If
not, can I guarantee the measure-
ments made by my test system here
will be the same after I ship the test
system overseas? Can I get the

accuracy I need in both places, and
are the calibration services
adequate?

In-house calibration lab
If you do not already have an
in-house calibration department
(see Figure 8.3), you might consider
setting one up, although the cost and
time to do so can be considerable.
If you intend to offer calibration
services to others outside your
company, your customers may
require you to have international
accreditation. A good place to start
is the International Laboratory
Accreditation Cooperation (www.ilac.
org). Members of ILAC, such as the
American Association for Laboratory
Accreditation (A2LA—www.a2la2.net),
will certify your lab after you have
met their requirements, a process
that can take from four to nine
months once the lab is fully opera-
tional. If you desire to have your lab
accredited, the international stan-
dard ISO 17025 will apply. It is not
necessary to become accredited, but
at the least, you may wish to become
ISO 9000 certified.

Figure 8.3. Calibration lab

90 8. Operational Maintenance

Contract services
For a broad range of calibration
services covering many types of
instruments, professional instrument
calibration services are available
from Agilent. See www.agilent.
com/find/calibration for details.
Non-Agilent equipment is included.
Contracted services can be arranged
in various levels, from single instru-
ments on an as-needed basis to
scheduled volume on-site calibration
(VOSCAL).

Swap and return
The third method of calibrating
equipment is to simply replace units
when they need calibration with
others that are still within their
calibration period. This requires
keeping one or two spares on hand,
which can be expensive. However, it
is a good idea to keep some spares
handy anyway if system uptime is
critical, as the next section discusses.
There is one caveat in swapping
instruments: A replacement may
be completely within its calibration
specifications, but if it is operating
at the opposite end of its calibration
range from the original instrument
and the production device being
tested is already near its limit, a
statistical variation could result
that is large enough to cause a yield
problem. The solution is to run a
statistical analysis on the results.
This analysis is called a “Gage R&R”
study, and it is covered in the next
section.

Diagnostics and Repair
Perhaps the hardest thing to do once
you have a test system finished is
to spend some extra time designing
a diagnostics test program that can
help locate the source of problems
when they arise. But it is time well
spent. Here’s what to do:

•	Execute a self-test on every instru-
ment that has this capability.

•	Measure the output of every
stimulus device with an appro-
priate measurement device to
verify that all instruments are
working and taking readings that
are nominally correct. This is not
sufficient to guarantee that they
are in calibration, but it is good
enough for a diagnostic tool.

•	Feed a small DC voltage from a
stimulus device (digital-to-analog
converter, power supply, etc.)
successively through all internally
available switching paths and
back to a DMM. This verifies the
switching subsystem.

•	Create a special diagnostic fixture
that loops signals that cannot be
automatically connected internally
back into the system. Use the same
procedure previously described to
measure continuity of these paths.

•	Read switch cycle count informa-
tion from any switch box that has
this capability. This data can give
you early warning of relays that are
nearing the end of their specified
lives.

•	Some instruments can do limited
internal automatic calibration
(sometimes called “auto-adjust-
ment”). This automatic procedure
should be done periodically, but
not necessarily every time diag-
nostic test programs are run. Keep
a programmatic calendar to remind
the operator to run such programs
when the due date occurs (usually
about every 30 days).

•	Attach a known good device under
test (DUT) to the system and run
a full suite of tests on it. This
technique is not foolproof, since
characteristics of such a “golden
DUT” can change over time as
components age. A useful way to
counter this effect is to periodi-
cally run a “Gage Reliability and
Reproducibility” (Gage R&R) test
on the system. There are two
sources of variation in any system:
the variation of the product and
the variation of the measurement
system. The purpose of conducting
the Gage R&R is to be able to
distinguish between the two so as
to reduce the measurement system
variation if it is excessive. This
means running a large quantity of
known good boards on the system
periodically to obtain a statistical
sampling that can be compared
to reference data to see if there is
any long-term drift in the measure-
ments. Such a study can also be
used initially to study the measure-
ment statistical parameters, which
can be used to set acceptable upper
and lower limits on each test. Look
for statistical process control (SPC)
and statistical quality control
(SQC) software tools that can help
you create such data.

91
www.agilent.com/find/open

In a production environment,
diagnostics can be run daily or at
the beginning of a shift. In a design
validation or R&D environment,
running the test once a week or less
may be adequate. Once a problem is
identified, the next step is to fix it.
There are several things you can do
to ensure fast repair:

•	Make it easy to replace instruments.
Make sure that mounting screws
are not hidden, that cables are
easily removed from the instrument
(and labeled so they are replaced
correctly), and that instruments are
not hidden inside a rack, necessi-
tating removal of other instruments
in order to get to them.

•	Although PCI slots in a rack-
mounted computer are tempting
spots to put instruments (since
they do not take up additional
rack space), remember that
removing the computer from the
rack to get to them is tedious and
time-consuming.

•	Use a limited set of custom cables
and keep spares on-hand in case
they need to be replaced. Use
standard, easily available cables
whenever possible.

•	Fixture connectors can wear out
over time. Have a good stock of
replacement connectors available.

•	Computers are a frequent source of
problems. Hard disks fail, moni-
tors quit, and keyboards and mice
get dirty. Have spares available.
Most importantly, keep important
files somewhere else or back up
the computer regularly to guard
against loss of data.

•	Maintain an inventory of spare
instruments. This can be expen-
sive, but so is a down production
line. Remember, too, that the cost
of many plug-in cards for PXI and
VXI is greater than an equivalent
rack-and-stack instrument because
rack-and-stack instruments
typically are produced in higher
volumes. Thus, it is less expensive
to inventory spares of box instru-
ments, and they can double as
debug tools when not in use inside
a system.

•	Place more than one of a key
instrument in your system when
you design it. For example,
an inexpensive DMM could be
integrated into the system for use
during manual debug, but pressed
into service should the main, high-
speed DMM require service. With
IVI drivers, such interchangeability
should not require a change to the
software.

•	Heat and thermal gradients are
enemies of any test system. Provide
adequate airflow to minimize heat
rise, and avoid a situation where
you are continually changing the
thermal environment of the test
equipment.

Cleaning
Maintaining good airflow through
your system is essential, because it
keeps the temperature under control,
assuring that instruments are
operated within their temperature
specifications. Many instruments
have removable air filters, so be
sure to inspect these regularly and
clean or replace them when neces-
sary. Some racks are also available
with air filters. These should also
be inspected regularly. Keep cables
away from the filters. If cables must
be moved in order to reach the filters,
the flexing can make the cables
eventually break, causing reliability
problems unrelated to dirty air.

If many operators will be using the
system, it is a good idea to peri-
odically clean the keyboard, mouse,
barcode reader and touchscreen, as
applicable. You generally can use
simple household cleansers. Disease
can be spread easily from one person
to the next via these devices. Trained
operators may be hard to find, so
keep them healthy!

92 8. Operational Maintenance

Upgrades and expansion
If you’ve designed your system well,
using the concepts highlighted in
earlier chapters, it will be able to
handle new instruments easily.
You’ve left extra space in the rack
for additional or bigger instruments,
and you’ve allowed expansion room
in your switching or instrumenta-
tion cardcage if present. You’ve
also designed the switching system
in such a way as to allow instru-
ments to be added to the system by
simply plugging the new inputs and
outputs into a place you’ve reserved
for future instruments (such as the
unused rows of a switching matrix,
as described in Chapter 5, Choosing
Your Test-System Hardware
Architecture and Instrumentation).
You’ve got room in your fixturing
system for more pins, and you’ve
developed a small set of reusable
cables to connect those into your
instruments and switches.

In the software realm, you’ve
planned for upgrades by doing
regression testing every time a
major piece of software is changed.
This means allowing time to re-run
the Gage R&R, diagnostic test plan
and/or known good DUT when the
operating system, test executive,
drivers or other support routines are
modified. You’ve also documented
the software and allowed for code
changes to be easily tracked. You’ve
written the software in an environ-
ment standard to the PC industry so
anyone familiar with languages such
as Visual Basic or C can take over the
system software and make necessary
changes as the years go by.

Conclusion
Test systems have made the task of
repetitive testing both faster and
more reliable, but there’s much to
consider to keep them running. You
must factor in worldwide power
issues, calibration, diagnostics,
repair, cleaning, upgrades and expan-
sion. At Agilent, we appreciate the
talent and effort required to design,
build and implement exceptional
test systems. If you are creating a
test system or need help with one
you already use, you can find lots of
advice at www.agilent.com/find/open.

93

Section 2. Networking Choices

Overview
The seven chapters in this section
explore the range of networking
options available for test system
automation:

9.	 Using LAN in Test Systems: The
Basics, provides an introduction
to the essential elements of local-
area networking (LAN), the basic
attributes of test systems, and the
benefits of using a LAN interface
for control and data transfer in a
system.

10.	 Using LAN in Test Systems: Network
Configuration, describes the poten-
tial risks of networking a test
system, suggests two secure topol-
ogies for LAN-based test systems,
and outlines the essential aspects
of system configuration.

11.	 Using LAN in Test Systems: PC
Configuration, describes the steps
required to enable commu-
nication between a PC and
LAN-enabled instrumentation,
including network settings in
Windows XP and IP address
assignments.

12.	 Using USB in the Test and
Measurement Environment, offers
a closer look at the universal
serial bus (USB) as a test system
connectivity option, including
USB connectivity and data rate
options.

3.	 Using SCPI and Direct IO vs. Drivers,
outlines the relationship between
input/output (I/O) software,
application software and the
ability to maximize instrument
interchange and software reuse in
present and future systems.

14.	 Using LAN in Test Systems:
Applications, offers advice on
balancing cost, convenience and
security in three common LAN
scenarios: sharing instruments,
remote monitoring and data
acquisition, and functional test
systems.

15.	 Using LAN in Test Systems: Setting
Up System I/O, describes the
components of the Agilent IO
Libraries Suite and presents a
quick, six-step process that will
make LAN-based instrument
connections as simple as using
GPIB.

94 Section 2. Networking Choices

95

9. Using LAN in Test Systems: The Basics

Introduction
This chapter provides an introduc-
tion to the essential elements of
local-area networking (LAN), the
basic attributes of test systems, and
the benefits of using a LAN interface
for control and data transfer in a
system.

Coping with complexity
The basic purpose of any test system
is to characterize and validate the
performance of electronic compo-
nents, assemblies or products. The
complexity of this task depends on
variables such as the physical nature
of the device under test (DUT), the
number of tests to be performed, the
number of signals to be measured
and the desired time per test.

The number of instruments used in
the system can further complicate
the task—and put a heavy burden
on the digital input and output
(I/O) between the system computer
(usually a PC) and the test equipment
(Figure 9.1). One of the best ways
to cope with a high volume of I/O
traffic—commands, status messages,
test data—is LAN technology, a fast,
open and low-cost alternative for
system I/O.

Figure 9.1. PC and test instruments in a rack

96 9. Using LAN in Test Systems: The Basics

Assessing wireless LAN
alternatives
In many companies, an increase in
workforce mobility has led to greater
demand for flexible networking
solutions, most notably wireless LAN
(WLAN). As with wired LAN, there is an
evolutionary series of standards that go
by various names, but all are generally
known as Wi-Fi (short for “wireless
fidelity”). The four main standards are
described below in order of commercial
introduction:

•	 IEEE 802.11b: Uses radio transmis-
sions at 2.4 GHz to send data at up to
11 Mbps and with an indoor range of
100-150 feet.

•	 IEEE 802.11g: Uses 2.4 GHz transmis-
sions to send data at up to 54 Mbps
and with an indoor range of 100-150
feet. It interoperates with 802.11b.
(Some vendors also offer proprietary
extensions that can provide higher
performance.)

•	 IEEE 802.11a: Uses 5.0 GHz transmis-
sions to send data at up to 54 Mbps
and with an indoor range of 25-75
feet. 802.11a is not compatible with
802.11b and g because it uses a
different modulation method.

•	 IEEE 802.11n: An emerging standard,
backwards compatible with 802.11b
and g, which should offer data rates
up to 10 times faster than 802.11a
or 802.11g and up to 50 times faster
than 802.11b.

For test systems, WLAN can enable
measurements in remote or hazardous
settings and provide an alternative to
costly cable runs. However, none of
the current standards can match the
combination of speed, reach and noise
immunity possible with a 100Base-T
wired LAN. What’s more, WLAN signals
are susceptible to interference from
other devices that operate in the same
frequency range, including cordless
phones and microwave ovens. Wi-Fi
signals may also interfere with the
testing of wireless DUTs.

Setting the standard
Today’s most pervasive computer
networking standard goes by a few
well-known names: IEEE 802.3,
Ethernet, 100Base-T, 1000Base-T,
or Gigabit Ethernet. Some variant
of this standard is almost always
used when PCs share files, exchange
e-mail, access the Internet and so on.
With steady improvements in cost,
speed and functionality, Ethernet has
achieved virtually universal adoption
for local-area networking (to the
extent that LAN and Ethernet are
sometimes used as synonyms).

Devices are often described as
being 100Base-T, 1000Base-T and
100/1000Base-T. The number
indicates the data rate in megabits
per second: 100Base-T is 100 Mbps
and 1000Base-T is 1000 Mbps;
100/1000Base-T devices are compat-
ible with both standards. The T
indicates unshielded twisted pair
(UTP) wiring to differentiate it from
older standards that used coaxial
cable.

Today, 100 Mbps technology is the
most widely deployed standard and
provides ample performance for most
uses. Consistent with its history, the
standard continues to evolve: Gigabit
Ethernet was standardized in 1998
and is now widely deployed and
10 Gigabit Ethernet has been more
recently standardized.

Tremendous competition among
vendors of Ethernet-based LAN
devices and cables has driven down
prices and driven up the volume
of products sold. The net result is
a wide selection of high-quality,
low-cost solutions for local-area
networking.

Defining key attributes and
elements
Wired LAN connections are made
with UTP cables called Category
5e, commonly referred to as
Cat 5e, which is the name of a
wiring standard defined by the
Telecommunications Industry
Association and Electronics
Industries Association (TIA/EIA).
(Cat 5e replaces the Cat 5 standard
that has been in use with LANs for a
number of years.) A CAT5 LAN cable
contains four pairs of copper wire
and uses locking RJ-45 connectors at
both ends (Figure 9.2). It is largely
immune to interference and crosstalk
and can support data rates of up to
1000 Mbps.

The other essential elements of a
LAN are the hardware devices that
control, manage, direct and amplify
the data being sent between other
devices on the network.

•	Adapter. This refers to the LAN card
and connector in a PC (and some
new-generation test equipment)
that provides an electrical inter-
face to the network.

•	Hub. A small, standalone unit that
connects multiple devices. Hubs
use a broadcast model to transmit
data, a method that reduces the
effective bandwidth (or data rate)
when network traffic is heavy.

97
www.agilent.com/find/open

•	Switch. Another standalone unit
that connects multiple devices on
a LAN, usually in what’s called
a “star” topology (Figure 9.3). In
this configuration, any device can
discover and talk to any other
device on the LAN. Because
switches contain more intelligence
than hubs, including the ability to
send data to a specific destination
and to devote the entire bandwidth
of the network to any segment of
the network, they typically provide
better performance than hubs.

•	Bridge. Similar to a switch but with
just one input and one output.
Used to break networks into
segments, which can improve the
performance within each segment.

•	Repeater. Similar to a bridge with
one input and one output but
contains active circuitry that reads
and regenerates the incoming
signal. Used to extend the length of
a network segment.

•	Router. A standalone box that
joins multiple networks (wired
or wireless) through its ability to
handle high-level protocols such as
TCP/IP (see “Connecting Ethernet
and Internet”). Routers allow
one- and two-way communica-
tion between devices and enable
“awareness” among the devices on
a network. They also allow devices
to hide their presence, enabling
the creation of small, private
networks. A router performs the
functions of a switch, but also joins
other networks. This is most useful
when you need a local network for
your test system, but also need to
connect to a corporate network.

We recommend that every standard
test system use either a switch or a
router. Also, note that the maximum
cable length for any segment of a LAN
is 100 meters (about 328 feet). Hubs
or switches can extend that distance
to roughly 1,600 meters (about one
mile) and the use of routers, switches,
bridges or repeaters between LAN
segments can yield a network of
virtually unlimited reach.

Figure 9.2. A CAT5 LAN cable with RJ-45
connector.

Figure 9.3. A simple network with one switch and multiple PCs in a
star topology.

Switch

Connecting ethernet and
internet
TCP/IP stands for “transfer control
protocol” and “Internet protocol,”
two separate standards that work
together to provide the foundation of
data communication on the Internet.
For example, Web browsers use TCP/
IP to communicate with Web servers.
TCP/IP also enables seamless
connections between local Ethernet
networks (also called intranets) and
the Internet, and between different
types of computers (e.g., Windows,
UNIX and Linux).

Technically speaking, Ethernet is just
one type of network technology that
can carry TCP and IP traffic. Other
examples include Token Ring (IEEE
802.5), DOCSIS (cable modem), xDSL
and ISDN.

98 9. Using LAN in Test Systems: The Basics

Using LAN in test systems
The computer in a test system plays
three important roles, two of which
rely on the I/O connection to the test
equipment:

•	It provides fast, reliable control
by sending commands, config-
uring instruments, reading
status messages and initiating
measurements.

•	It gathers test data—raw or prepro-
cessed—from the instruments and,
if necessary, stores it for postpro-
cessing and archival purposes.

•	After testing one or more prod-
ucts, the computer (and its test
software) may also analyze the
results and provide reports for
further evaluation by engineering
staff, manufacturing management,
contract manufacturers and others.

As each task becomes more data
intensive, the choice of I/O interface
becomes more significant (Figure
9.4). Speed is an important factor,
but a test-system connection must
also be rugged, noise-tolerant and
able to handle multiple instruments.

As Chapter 2 discusses in detail, the
advantages of LAN technology make
it a good choice for meeting the I/O
needs of test systems. With LAN
adapters built into most current-
generation PCs, the computing
portion of the system requires
minimal physical configuration to
support test system deployment.

This situation is driving the addition
of LAN connectors and adapters to
current- and next-generation test
equipment. The LXI Consortium has
chosen LAN as the interface for test
equipment (for more information on
LXI, refer to Chapter 16). The inclu-
sion of both LAN and GPIB may be
quite common for the next few years.
One recent example is the Agilent

Figure 9.4. An example test system that utilizes a PC, several instruments, a LAN router, a LAN/
GPIB gateway and three types of I/O

E5810A

N5230A

54832A

33220A

34401A53131A

Router

LAN/GPIB gateway

USB

Ethernet

Figure 9.5. The rear panel of the 33220A function generator includes USB,
LAN and GPIB interfaces.

33220A function generator (Figure
9.5), which has LAN, USB and GPIB
interfaces built into its rear panel.
Agilent recognizes the pervasiveness
of GPIB in existing test systems and
will continue to support it. At the
same time, we are also committed to
providing LXI compatibility in new
instruments, making it the most prev-
alent interface in the near future.

99
www.agilent.com/find/open

As a near-term solution, standalone
gateway devices make it possible to
connect current-generation PCs to
older test equipment and systems.
The Agilent E5810A LAN/GPIB
gateway (see Chapter 2, Figure 2.5)
has a LAN port for the PC and a
GPIB port that can control up to 14
instruments. By providing LAN-based
access to a test system, the gateway
enables useful capabilities such as
remote monitoring of test progress
and collaboration and consulta-
tion with distant colleagues. It also
has a built-in Web server, which
lets you use a browser to set up,
configure and use the gateway—and
control instruments—from a remote
computer.

The E5810A gateway is fully
supported by the Agilent IO Libraries
Suite, which enables automatic
control of instrumentation from a
variety of programming languages.
The gateway also has Universal
Plug&Play (UPnP) support, making
it appear as a network device in
Windows XP and Vista.

Communicating with
instruments
LAN support in a test instrument
usually means three things. First is
a 100/1000Base-T adapter, which
is compatible with today’s most
commonly deployed LAN equipment.
Next is the locking RJ-45 connector
that ensures a dependable connec-
tion to the instrument as well as

the hub, switch or PC at the other
end. The third element is the test
and measurement communication
protocol called VXI-11.

VXI refers to both a test-and-
measurement standards body and its
well-known multi-vendor standard for
modular, cardcage-based test systems.
VXI-11 is a more recent standard that
defines LAN-based connectivity for all
types of test equipment, not just VXI.

The VXI-11 protocol makes the I/O
connection appear to PC applications
as though the instruments were
connected via GPIB. In practice, this
means applications written for GPIB
are likely to work on VXI-11 instru-
ments, especially if they use the
VISA I/O API—the Virtual Instrument
Software Architecture’s input/output
application programming interface.
(VISA is also a multi-vendor standard.)�

�	 To learn more, visit
www.vxibus.org/specs.html (VXI-11)
and www.vxipnp.org (VISA).

Enabling additional capabilities
Through the many available appli-
cations of Ethernet and TCP/IP,
LAN-enabled instruments can do
more than just support VXI-11. For
example, they can be equipped with
built-in Web servers. A good example
of this capability is the Agilent
Infiniium family, which includes
digital sampling oscilloscopes,
mixed-signal oscilloscopes and
digital communication analyzers.
By pointing a Web browser at the
instrument’s IP address, the user can
view the instrument configuration,
change its settings, start a measure-
ment and see the results (Figure 9.6).

Some LAN-equipped instruments
provide even greater functionality:
inside every Infiniium product is
a PC running custom software on
a version of Microsoft Windows.
Windows has several LAN services
built in, enabling capabilities such as
sharing of files, folders, drives and
printers.

Figure 9.6. The virtual front panel of the Infiniium oscilloscope enables
browser-based interaction with the instrument.

100 9. Using LAN in Test Systems: The Basics

Conclusion
Fast and inexpensive LAN tech-
nology has achieved widespread
adoption in the computer world and
is now shaping the future of test
system development and operation.
LAN-based systems provide several
advantages for test-and-measurement
applications: lower-cost hardware
and cabling; pervasive availability
throughout most enterprises; remote
or shared system control; fast data
transfers; file, drive and printer
sharing; and browser-based interac-
tion with individual instruments.
The LXI standard standardizes the
LAN protocols and connectors as
well as a host of other items for the
test and measurement industry, thus
ensuring easy interoperability of
instrumentation.

For decades, the robust GPIB
interface has been the dominant I/O
for test systems. Agilent is committed
to supporting GPIB well into the
future—and we are also committed
to developing new-generation test
equipment that includes both GPIB
and LAN interfaces.

To learn more about I/O connections
and other ways to simplify system
integration and apply the advantages
of open connectivity, please visit
www.agilent.com/find/open.

101

10. Using LAN in Test Systems:
Network Configuration and Basic Security

Introduction
This chapter describes the potential
risks of using LAN in test systems,
suggests two secure topologies for
LAN-based test systems and outlines
the essential aspects of system
configuration.

Creating a safe haven
The decision to use LAN in a test
system delivers important benefits to
your company and your team. From a
business perspective, intense compe-
tition among equipment vendors has
produced a wide selection of high
quality, low-cost solutions for local
area networking. From an organiza-
tional view, widespread use of LAN
technology simplifies connectivity
and enables new levels of commu-
nication and collaboration between
team members, wherever they may
be in the world.

Of course, the use of any pervasive
computing technology also carries
risks. Adding a LAN connection can
open the door to inadvertent threats
carried on a company’s intranet,
and may expose a test system to a
variety of malicious threats from the
Internet (Figure 10.1).

Fortunately, there are effective, prac-
tical solutions that can protect your
system from internal and external
risks. Our recommended starting
point is to create a protected, private
LAN for the test system. The stan-
dard capabilities of most Microsoft
Windows PCs and many low-cost
networking products enable two
viable approaches, one router-based
and the other PC-based. Several
factors will influence your choice,
and your decision has implications
for the selection and configuration
of the PC, the network and the test
instrumentation.

Understanding the pitfalls
Test systems that aren’t connected to
enterprise networks are sometimes
labeled as “islands of automation.”
However, their isolation provides
an unintended benefit: standalone
test systems are insulated from the
viruses, worms and Trojans that
might strike a company’s network.

For a system on an island, the biggest
risks come from human interfer-
ence. System errors might arise if
a configuration change is made via
the front panel or if two instruments
are set to the same GPIB address.
These problems are easy to fix and
the integrity of the system remains
intact.

Recognizing potential threats
Connecting the system’s host PC to
the company network builds a bridge
to the island. It also opens the door
to a wider range of threats—including
some that may compromise system
security and integrity.

Inadvertent threats may reach the
system via the company intranet.
Some are programmatic, as when
another PC on the network causes a
configuration change in one or more
instruments. Others are systematic,
such as configuring the test instru-
ments for dynamic rather than static
IP addresses may cause unexpected
operation. As an example, if the IP
addresses of two power supplies are
reversed, the device under test (DUT)
could receive the wrong voltages at
the wrong points and suffer severe
damage.

Figure 10.1. The Blaster worm infected more than 300,000 computers in less than 18 hours

Hours from start

N
um

be
r

of
 in

fe
ct

io
ns

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000

0

Blaster: The first 18 hours

102 10. Using LAN in Test Systems: Network Configuration and Basic Security

Malicious threats from the Internet
may breach the company’s firewall,
spread via the intranet and infect the
system’s host PC. These threats also
pose a potential risk to any instru-
ments that contain a Windows PC.
One answer is to include a hardware
or software firewall in each instru-
ment—a solution Agilent is enabling
in next-generation instruments.

Examining other issues
A LAN-based system is also subject
to the quirks and limitations of the
deployed hardware. As an example,
the simplest way to connect a system
to the corporate network is through
a hub. However, hubs let all network
traffic flow in both directions; all
intranet traffic would be present
within the test system and all test
system traffic would appear on the
intranet. Excess network traffic could
degrade system throughput and the
broadcasting of test results on the
intranet could be a security risk.
Using a switch or router is a better
choice because both are specific
and selective about filtering and
forwarding network traffic.

Some older LAN-enabled instruments
also have two weaknesses that must
be addressed or acknowledged: the
inability to lock connections and
authenticate devices. For example,
those that don’t support the VXI-11
communication protocol (or provide

partial support) probably can’t create
a locked LAN I/O session between
the instrument and a PC.

Locking ensures a stable PC-to-
instrument connection and also
blocks other attempts to access
the instrument for the duration
of a session. Instruments that do
support VXI-11 have an important
shortcoming when not locked into a
session: they have no authentication
capabilities (e.g., password protec-
tion) to block unauthorized access.
In this case, any PC on the network
that supports VXI-11 can access the
instrument and easily disrupt its
behavior. The solution is a private
LAN that limits access to only those
devices you trust.

Designing the private,
protected LAN
Our basic prescription for any
LAN-based test system is to create
a private, protected network that
includes the host PC and the test
equipment. Fortunately, there are
two practical, effective ways to set up
this type of network. One approach
is built around a LAN router, which
provides a buffer between the test
system and the corporate intranet.
The other approach uses the host
PC as the buffer by configuring it
with two LAN cards and the Internet
Connection Sharing (ICS) feature of
Windows XP and Vista.

The router-based approach
A router is a standalone box with
multiple LAN connectors, one for
the external or “public” network and
four (or more) for the internal or
“private” network. The router links
these networks through its ability
to handle high-level communication
protocols such as TCP/IP. Routers
allow one- and two-way communica-
tion between devices and also enable
“awareness” among devices on a
network.

Routers also utilize a feature called
network address translation (NAT)
that allows devices to hide their
presence from public networks. It
does this by using a private set of
IP addresses that are not revealed
to devices on the public side. This
is the key attribute that enables the
creation of a private LAN for a test
system.

As shown in Figure 10.2, the router
is the focal point of the network.
In the simplest router-based
system, its “external” port, usually
labeled Internet or WAN (wide area
network), is connected to the corpo-
rate intranet. Its other ports, usually
labeled LAN, are connected to the
host PC and a few LAN-enabled
instruments. Additional instruments
can be added by connecting a switch
or hub to one or more LAN ports on
the router (Figure 10.3).

The router-based approach has
several advantages. First and
foremost, it protects the test system
from the potential hazards carried
on the intranet or Internet. It also
prevents any type of outside access
by limiting communication to only
those devices that reside within the
private LAN— and, unlike a hub, it

Figure 10.3. An expanded network that uses a switch to connect
additional instruments to the test system

To corporate
intranet

Router

Switch

Instrument 2Instrument 1

Instrument 4Instrument 3

Figure 10.2. A test system that uses a router-based private, protected LAN

To corporate
intranet

Router

Instrument 2Instrument 1

103
www.agilent.com/find/open

shields the system from intranet
congestion by isolating all but local
traffic. What’s more, the router
safeguards system operation from
the effects of administrative activity
or hardware problems on the local
intranet because it provides all of
the network services needed by the
instruments and the host PC. At the
same time, the router gives the PC
unhindered access to the system
network as well as the corporate
intranet and the Internet. It also
gives all LAN-enabled instruments
access to TCP/IP resources on the
intranet and the Internet.

The configuration process is rela-
tively simple for the router and the
PC—to the extent that you usually
won’t have to burden corporate
IT personnel with the task. For
example, a host PC that’s already
equipped with a LAN card doesn’t
require any hardware modifications.
The only PC configuration change,
made after the router is installed
and enabled, is to activate dynamic
host configuration protocol (DHCP),
which is a method of automatically
assigning an IP address to any device
connected to a LAN. (DHCP may be
turned on by default, but it’s best to
verify this setting.)

Instrument configuration is also
quite simple. The only changes are
deactivating DHCP then setting the
IP address, subnet mask and default
gateway. These tasks are easy to
complete via the front panel or web
interface of most LAN-enabled instru-
ments. A more detailed description
of the configuration process is
presented in Appendix 10A.

Defining router and PC
features
Successful implementation of the router-
based private network requires a few
essential capabilities. Must-have router
features

•	 Network address translation (NAT).
NAT allows the router to act as
an agent between the public and
private networks, mapping private IP
addresses to public IP addresses and
enabling communication between
networkss.

•	 De-militarized zone (DMZ) . The
DMZ feature makes it possible to
give a PC (or instrument) complete
access to the Internet, effectively
putting it “outside the firewall.”
With DMZ, other computers outside
the private network can connect
to the host PC and use its public
services (e.g., shared file folders
or a Web server). Because DMZ is
implemented differently on various
router models, you should verify that
you are able to achieve essential
tasks such as communication with a
manufacturing database Should-have
router features:

•	 Sufficient ports. Each device should
have its own LAN po. Each device
should have its own LAN port, either
in the router or via one or more LAN
switches or hubs connected to router
ports.

•	 Adequate port speed. The router
should support at least 100 Mbps
(100Base-T) on each LAN port (the
private side) as well as 100 Mbps on
the WAN port (the public side). 1000
Mbps (Gigabit or 1000Base-T) routers
and PCs are widely available and
recommended for best performance.

•	 Built-in DHCP server. The router
assigns IP addresses to the LAN
devices attached to its private LAN
ports. Some routers keep a table in
non-volatile memory that provides
a mapping between the assigned
IP addresses and the associated
Ethernet devices on the private
network. Vendors call this capability
by many names, including “static
DHCP,” “DHCP client reservation,”
“fixed mapping,” and “MAC address
to IP mapping.” (MAC stands for
media access control.)

The router-based approach also requires
a host PC that uses TCP/IP rather than
NetBEUI, IPX or SPX1 as its network
communication protocol. The PC may use
DHCP to ensure assignment of a unique
IP address, or it can be configured with a
static, internal IP address that is compat-
ible with the router’s configuration.

1 	 NetworkBIOS Extensions User Interface,
Internetwork Packet eXchange and Sequenced
Packet eXchange are alternatives to TCP/IP for
network communications. If installed in the host
PC, their presence can create problems within
the network.

104 10. Using LAN in Test Systems: Network Configuration and Basic Security

The PC-based approach
By adding a second LAN card and
activating ICS in Windows XP or
Vista, the host PC can serve as the
router in the network (Figure 10.4).
ICS routes traffic from one LAN
card to the other and provides NAT
capabilities for the private addresses.

This method has several advantages
in common with the router-based
solution: it provides access control,
blocks Trojans and worms, and gives
the host PC unhindered access to the
system network, the intranet and the
Internet. LAN-enabled instruments
can also access the intranet and the
Internet. However, if the host PC is
configured to use DHCP rather than
a static address then it will have to
rely on the corporate intranet being
functional and able to provide an IP
address.

Although it probably isn’t a major
obstacle, this approach requires that
you are comfortable with the pros-
pect of opening up the PC, installing
the second LAN card, and config-
uring the PC to ensure the peaceful
coexistence of two LAN cards.�

�	 It is also possible to use a USB-to-
Ethernet adapter as the second LAN
port, but there would be some latency
in this connection—and the configura-
tion process is slightly more complex.

The most important step is the
configuration of ICS within the host
PC, which must be running Windows
Vista, Windows XP with Service
Pack 1 (SP1), Service Pack 1a (SP1a)
or Service Pack 2 (SP2) (Microsoft
service packs are cumulative).�

�	 Other operating system configurations
may work but this note focuses on the
most recent versions of Windows.

Through the Network Connections
control panel, both LAN cards can be
enabled and the one connected to the
public network can be shared. You
then use the Local Area Connection
Properties window to enable ICS
(Figure 10.5).

Figure 10.4. The PC-based solution, with two LAN cards in the PC and a
switch to connect the instruments

To corporate
intranet

Switch

Instrument 2Instrument 1

Figure 10.5. Use the Local Area Connection properties window in
Windows XP to activate Internet Connection Sharing.

105
www.agilent.com/find/open

Instrument configuration
Keep one important caveat in mind
when using either approach: the
default mode of both ICE and a
router is to dynamically assign an
IP address to every device that joins
the network. This is done via DHCP,
which prevents addressing conflicts
but also creates the possibility of
assigning a different address to
each test instrument every time it
is powered up or reconnected to
the network. As described earlier,
unwanted address changes can result
in improper operation and damaged
DUTs.

The easiest way to prevent address
changes is to disable DHCP in each
instrument and then enter a static
(fixed) IP address. Though this will
be easy to accomplish via the front
panel or web interface of most newer
LAN-enabled instruments, it may not
be possible with some older equip-
ment. In those cases, the easiest solu-
tion is to use the GPIB interface on
the instrument and add a LAN/GPIB
gateway such as the Agilent E5810A
to the network.

The IP addresses you assign to the
instruments should only differ from
the IP address of the router by the
last of the four numbers in the IP
address (e.g., 192.168.0.x). You may
want to use numbers higher than
200, reserving the first few digits
for any DHCP-enabled devices for
which the router will typically
assign an address in that low range.
Applying these ideas to a system
that includes a router at the IP
address 192.168.0.1, the instruments
could use numbers in the range of
192.168.0.200 to 192.168.0.255.

It is also necessary to configure the
instruments with the proper subnet
mask (usually 255.255.255.0) and
default gateway, which is the IP
address of the router itself (typically
192.168.0.1, 192.168.1.1 or similar,
depending on the router maker).

Once you’ve saved these settings,
you may have to cycle power on each
instrument for the changes to take
effect. After each instrument has
completed its boot-up operations you
can then connect it to a LAN port on
the router.

Conclusion
The decision to use LAN for system
I/O delivers valuable benefits to your
company and your team. However,
it also opens the door to malicious
threats and inadvertent risks that
can affect system performance and
integrity. The creation of a private
LAN can protect the test system from
those risks and ensure maximum
throughput. Using the standard
networking capabilities of today’s
PCs and the low-cost networking
products now available, you can
chose either a router-based or PC-
based approach.

Both approaches protect the test
system from the potential hazards
carried on the intranet or Internet,
prevent any type of unauthorized
outside access, and shield the system
from intranet congestion by isolating
all but local traffic. The router-based
approach has the additional benefits
of safeguarding system operation
from the effects of administrative
activity or hardware problems on
the local intranet because the router
provides all of the network services
needed by the instruments and the
host PC.

Appendix 10A: Configuring
the router-based system
Of the two solutions described in
this chapter, the router-based system
is more flexible and therefore more
likely to be widely used. The specifics
of the configuration process depend
on the actual products used to
assemble the system. However, three
essential steps provide a framework
for the implementation of any router-
based solution: capturing network
information, configuring the router
and setting up the test instruments.

Capturing network information
You’ll need to record some informa-
tion about the network and use it
to set up the router, which will be
inserted between the PC and the
intranet. That way, the PC is already
programmed with everything you
need to know about its network
configuration. You’ll need to record
that information and use it to set up
the router.

What you need
Configuration requires the host PC,
powered up and connected to the
intranet; the router; one LAN cable
for the PC and one LAN cable for
each instrument.

The process
1.	 Power up the router.

2.	 Disconnect the intranet LAN
cable from the PC. Use another
LAN cable to connect the PC’s
LAN port to any LAN port on
the router. Wait a minute or so
to ensure the PC and router are
synched.

106 10. Using LAN in Test Systems: Network Configuration and Basic Security

3.	 From the PC’s Start menu, open
a DOS or Command window and
type in ipconfig/all. This will
display several items including
“Host Name” and “Physical
Address.” The PC’s host name
is registered with the corporate
DNS services. The physical
address is the unique MAC or
Ethernet address of the LAN card
in the PC. Write down the host
name, the physical address, and
the IP address of your computer:
you’ll use that information later
when configuring the router.

To create a new, private network that
consists of just the PC and the router,
return to the DOS or Command
window and type in ipconfig/renew.

Configuring the router
The router must be configured to
mimic the test system PC on the
corporate intranet. Most routers
provide a browser-based interface
that lets you use any Web browser to
log in and modify the configuration.
Consult the router’s manual for its
URL and the default login values for
user name and password. Launch
your Web browser, type in the proper
URL and log in to the router’s
configuration page. At this point, the
details vary by vendor and product.
There might be a built-in wizard
function, or you may have to navi-
gate through various configuration
screens and enter values manually.
Either way, you need to accomplish
five tasks:

1.	 Enter the PC’s host name.

2.	 Enable cloning of the PC’s MAC
address.

3.	 Modify the security settings to
disable blocking of anonymous
ping requests. (Allowing other
computers to ping the host PC
may be a requirement of some
corporate intranets.)

4.	 Enable the DMZ capability and
set the DMZ host IP address to
192.168.x.100 (the x must match
the value used by your router).
This is the default first address
assigned by the router’s DHCP
server and must be used as the
IP address for the host PC. Some
routers may use different initial
addresses: type in the ipconfig/
all command to find out what
address the router assigned the
PC after they were connected.

5.	 Save all of these settings. Locate
the intranet cable that was
originally connected to the PC
and plug it into the router’s
WAN or Internet port. To verify
proper operation, open a DOS
or Command window and type
ipconfig/release. Next, type
ipconfig/renew: the host PC
should now be able to access the
corporate intranet via the router.

Setting up the instruments
The final step is to configure the test
instruments with static IP addresses.
Use the front panel keys of each
LAN-enabled instrument to access
the I/O, Utility or IP Setup configura-
tion menu and disable DHCP. Next,
give each instrument a unique IP
address in the range of 192.168.x.200
to 192.168.x.255 (Figure 10.6). These
values are outside the range of IP
addresses routers typically assign to
network devices (192.168.x.100 to
192.168.x.149).

You’ll also need to navigate the
configuration menu and set the
subnet mask to 255.255.255.0 and
the default gateway to the router’s IP
address (192.168.0.1, 192.168.1.1 or
similar, depending on which brand of
router you’re using).

Once you’ve saved these settings,
you’ll have to cycle power on each
instrument for the changes to take
effect. After each instrument has
completed its boot-up operations, use
a LAN cable to connect each one to a
LAN port on the router.

To verify proper configuration, open
a DOS or Command window and
type ping 192.168.1.200 or any other
valid IP address you assigned to an
instrument. To verify access to the
intranet, launch a Web browser and
try a few internal URLs. If these
load as expected, this verifies proper
communication with the intranet.

Figure 10.6. The IP Setup menu of the Agilent 33220A function/arbitrary
waveform generator makes it easy to set the IP address, subnet mask and
default gateway.

107

11. Using LAN in Test Systems: PC Configuration

Introduction
This chapter builds on the informa-
tion presented in Chapters 9 and 10,
describing the additional capabilities
required to enable communication
between a PC and LAN-enabled
instrumentation.

Creating the right
environment
The evolution of LAN technology
continues to drive improvements in
cost, speed, functionality and ease
of use. This has created at least
two noteworthy trends. One is the
widespread use of LANs within most
businesses. The second is the inclu-
sion of LAN as a standard feature
of most new PCs. A third trend is
emerging in test-system development:
the advantages of LAN technology
are making it an attractive alterna-
tive to GPIB for system input/output
(I/O).

Chapter 16 offers a closer look at
LXI, the new LAN-based standard for
computer-instrument communica-
tion. Backed by the LXI Consortium,
which includes every major test and
measurement company, the LXI stan-
dard ensures interoperability among
vendors’ LAN-based instruments and
simplifies configuration and program-
ming of LAN-based systems. Given
the advantages of LAN and LXI,
LAN interfaces are becoming more
common in test equipment—though
LAN ports will likely coexist with
GPIB for years to come.

On the surface, the use of LAN to
communicate with instruments
seems like it should be as simple
as connecting a printer to a PC:
just grab a network cable and make
the connection. Unfortunately, it
requires a bit more effort to create
the right environment within a PC
for transparent communication with
LAN-equipped instruments. Making
it work depends on the LAN services
of Windows XP and Vista, and the
additional capabilities provided by
a suite of I/O libraries from Agilent
make it nearly “printer easy.”

Exploring network settings
in Windows XP and Vista
A standard Windows XP or Vista
installation includes three software
components that enable networking:
Client for Microsoft Networks, File
and Printer Sharing for Microsoft
Networks, and Internet Protocol
(TCP/IP).� TCP/IP is the network
protocol that enables data communi-
cation with the Internet, your corpo-
rate intranet and other computers.

You access the PC’s TCP/IP settings
through the Windows Control Panel
and its Network Connections icon (or
Network and Internet Connections
category). The Network Connections
window will present every installed
LAN card under the default name
“Local Area Connection” (you can
change this name). Each entry will
indicate the device’s connection
status (enabled or disabled) and

�	 Transfer Control Protocol, Internet
Protocol. Please refer to the glossary
for more on networking terms.

manufacturer and model. Right
clicking on a Local Area Connection
entry will bring up a menu that
includes a Properties selection that
opens the Local Area Connection
Properties window (Figure 11.1). This
window includes a list of check-
box items, and “Internet Protocol
(TCP/IP)” is the last item in the
list. Clicking on that item (not the
check box) and then clicking the
“Properties” button will bring up the
TCP/IP configuration window. This
is where you can change IP address
settings (static or dynamic) and other
networking parameters.

Figure 11.1. Use the Local Area Connection
Properties window to set networking parameters
such as the IP address.

108 11. Using LAN in Test Systems: PC Configuration

Using multiple network
connections
It is possible to install multiple
network cards in a Windows XP or
Vista machine. One reason to use
two LAN interfaces in one PC is
described in Chapter 10: the PC can
do double duty as the host computer
for a LAN-based test system and as
a router that links a private network
(for the test system) to the corpo-
rate intranet. The Interconnection
Connection Sharing (ICS) feature
of Windows XP and Vista, accessed
through the Local Area Connection
Properties window, makes this
configuration possible.

Managing IP addresses
In the dual LAN card configura-
tion, the PC acts as the network
controller for the private network,
enabling access to the public network
and providing network address
translation (NAT) and dynamic
host configuration protocol (DHCP)
services to connected devices. NAT
is the key capability that enables the
private, protected LAN by shielding
private IP addresses from the public
network.

DHCP automatically assigns an IP
address to any device connected to
the network and also ensures that
no two devices receive the same IP
address. This is the default setting in
Windows XP and most LAN routers.
It’s very simple and it works well 99
percent of the time—as long as the
default DHCP server on the network
is up and running.

Of course, the “dynamic” part of
DHCP means that a device may
receive a different IP address if it is
disconnected and later reconnected
to the network. This can cause prob-
lems in a LAN-based test system. For
example, if the system contains two
power supplies and DHCP reverses
their IP addresses, the device under
test (DUT) could receive the wrong
voltages at the wrong points and
suffer severe damage. There are two
alternatives. One is to assign perma-
nent (static) IP addresses to every
device on the network. This lets you
fine tune the network and its settings;
it also isolates the network from any
failure of the corporate DHCP server.
On the downside, this approach can
become overwhelming in a large
network, increasing the chances of
configuration errors or bad settings
that could cause problems across the
network.

The other alternative is to use
a dynamic domain name server
(dynamic DNS or DDNS) on the local
network. DDNS lets an instrument,
PC or other network device establish
a specific host name when it connects
to the network. (The host name can
typically be entered via the front
panel of a LAN-enabled instru-
ment.) Large corporate intranets
usually have such a server, which
allows other devices to use the host
name with DNS to find the device’s
IP address and connect to it. If an
instrument’s IP address changes,
DDNS ensures a quick update of
the DNS table of addresses. This
approach has one major caveat:
DDNS will not typically be avail-
able on the small, secure networks
we recommend for test-system
applications.

Running a network without
DHCP
If a device running TCP/IP is set to
obtain its IP address automatically
but there is no DHCP server available,
the device will use a capability called
Automatic Private IP Addressing
(APIPA or “auto IP”) to assign itself
an address about two minutes after
boot-up. This feature is built into
Windows PCs and most Agilent
instruments. Auto IP creates
addresses that are designed to be
compatible with each other, enabling
the establishment of a network
without DHCP or the configuration
of static IP addresses. Also, most of
Agilent’s LAN-enabled instruments
use the NetBIOS (Network Basic
Input/ Output System) protocol. In
a network configuration that lacks
a DHCP server, the PC can connect
to the instrument by using the host
name that is configured from the
instrument front panel. This makes
it easy to create a direct connection
from a PC to a single instrument, and
all it takes is a LAN crossover cable.

109
www.agilent.com/find/open

Configuring LAN with
Agilent IO Libraries Suite
The preceding section describes a
tedious process that could take hours
(perhaps days) to complete for a
large test system. It all became much
easier with the Agilent IO Libraries
Suite.� This is an enhanced version
of the Agilent IO libraries that simpli-
fies and accelerates the process of
connecting test equipment to a PC.
One of its greatest contributions is
a set of automated tools that detect
connected instruments, configure
the interfaces and verify the connec-
tions—even in test systems that mix
multiple interfaces and instruments
from multiple vendors.

Using the Connection Expert
The Agilent Connection Expert is
one of the most powerful tools in
the IO Libraries. Not only does it
automatically discover connected
instruments and configures the PC’s
interfaces for communication, but it
also manages GPIB, RS-232, VXI, USB
and LAN interfaces simultaneously.

�	 We use “IO” rather than “I/O” in the
product name because most oper-
ating systems don’t allow the slash
character in file names.

The Connection Expert includes an
on-screen task guide that helps both
occasional and expert users perform
connection tasks. In most cases, you
should be able to establish error-free
connections in less than 15 minutes.

The Connection Expert makes
programming easier, too. It can help
you find information relevant to your
instruments in popular development
environments such as C, C++, Visual
Basic, Visual Basic .NET, Agilent VEE
Pro and NI LabVIEW. The Connection
Expert can also point you to
numerous example programs written
in various languages. Another nice
touch: it lets you create an alias name
for each instrument so you don’t
have to change the source code if you
change an instrument’s IP address.
You can even switch from GPIB to
LAN connectivity and use an alias
that looks like the old GPIB address.
Using this feature, you can often
make older programs work via LAN
without reconfiguring or recompiling
the code.

Debugging with I/O utilities
The Agilent IO Libraries Suite also
includes a set of utilities that will
help you perform various debugging
tasks from the PC (Figure 11.2):

•	Interactive I/O. Allows you to query
instruments one command at
a time, sending commands and
reading the responses.

•	Remote I/O Server. Lets you connect
to instruments that are attached to
a different PC that resides on the
same network.

•	VXI Resource Manager. Helps you
configure the Agilent E8491 IEEE-
1394 PC link to the VXI interface.

•	ViFind32 Debug Utility. Uses VISA
functions to find resources and
lists them in a console window.
These utilities are just one more
way Agilent can help you stream-
line your test-system development
activities.

Figure 11.2. The Agilent Connection Expert provides quick, easy access
to connection utilities.

110 11. Using LAN in Test Systems: PC Configuration

Enabling communication with
instruments
With connectivity completed and
verified, the next step is to ensure
and enable communication between
the PC and the instruments. As
one example, the VISA I/O API
can use two different methods to
communicate with LAN devices: the
VXI-11 communication protocol and
raw TCP/IP socket communication.
VXI-11 is the preferred choice when
moving existing (GPIB-based) code or
when you want to keep a consistent
programming style with GPIB instru-
ments. Sockets should be used when
the host PC does not support VXI-11.
Sockets also provide the highest level
of performance, but at the cost of
some programming complexity.

From the PC’s point of view, the VXI-
11 protocol creates an I/O connection
that looks and behaves like GPIB. In
practice, this means software written
for GPIB is likely to work on VXI-11
instruments. Almost all of Agilent’s
LAN-enabled instruments support
the VXI-11 protocol.

Conclusion
With LAN ports in most current
generation PCs and many new-gener-
ation test instruments, connecting
the two is almost as simple as plug-
ging in a network cable—if you apply
the capabilities and tools that are
part of the Agilent IO Libraries Suite.

To discover more ways to simplify
system integration, accelerate system
development and apply the advan-
tages of open connectivity, please
visit www.agilent.com/find/open.

111

12. Using USB in the Test and Measurement Environment

Introduction
This chapter offers a closer look at
the universal serial bus (USB) as a
test-system connectivity option. For
a review of the comparative advan-
tages of LAN, GPIB and USB, please
refer to Chapter 2, Computer I/O
Considerations.

USB in the PC universe
Chances are you’re already familiar
with USB, thanks to its wide use in
PC printers, scanners, cameras and
other digital devices. However, some
background on USB’s place in the PC
universe might help you decide how
and when to use USB for test and
measurement.

The USB story
On the timescale of computing
technology, USB has been around for
quite some time: the original version
of USB was introduced concurrently
with Microsoft Windows 95. USB’s
original goals included replacing
the multiple types of interfaces then
in use in PCs and eliminating the
complex configuration steps they
sometimes required. Computers with
USB 1.0 first appeared in 1996, and
Windows has supported USB ever
since.

The USB standard has gone through
two major revisions since version
1.0. USB 1.1, introduced alongside
Windows 98, took advantage of the
new Plug and Play connectivity in
the operating system. All you needed
to do in most cases is attach the
connector and you’re ready to go.
(Nearly all PCs today, both desktop
and laptop, come with built-in USB
ports. You can also add USB cards to
older PCs.)

This simplicity spurred rapid growth
in the number of PCs and peripheral
devices that offer built-in USB.
However, as digital devices began
to demand more bandwidth, the 12
Mbits/second top speed of USB 1.1
became a growing concern in some
applications. USB 2.0, introduced
in 2001, dramatically expanded
bandwidth with speeds up to 480
Mbits/second. USB 2.0 is backwards
compatible with USB 1.1, although
this can lead to some confusion
about data rates, as you’ll see below.

USB connections
With its intended use in consumer
applications, USB is not only
inexpensive but also easy to use.
Connections are hot pluggable
(sometimes called hot swappable),
so there’s no need to power down
before you add or change connec-
tions, and the PC auto discovers new
devices as soon as you plug them in.
And unlike GPIB, where you must
assign a unique address identifier
to every device in the system (and
keep track of which device is where
if you reconfigure the system), every
USB device has an embedded serial
number that the PC reads as soon as
you connect it.

From a mechanical standpoint, USB
1.1 and 2.0 are identical; both use the
same four-wire scheme (two power
wires and a twisted pair for data),
and any fully compliant USB cable
will work in any USB system, regard-
less of speed.

The theoretical maximum number
of devices in a single USB system is
128 (the PC plus 127 other devices).
However, you can’t daisy-chain
devices together as you can with
GPIB. Rather, you can expand by
using a hub; typical hubs provide
ports for four to eight devices. To add
more devices, you can daisy-chain
additional hubs. Hubs can be either
self-powered or bus-powered; devices
that require a significant amount of
power often require a self-powered
hub to ensure adequate power levels.

The Benefits of USB
•	 Near-universal availability in

today’s PCs

•	 Hot-plugging with auto
discovery for true plug-and-play

•	 Low cost

•	 Simple connection with no
configuration required

•	 Flexible speed levels to
accommodate a variety of devices

•	 Simultaneous connection of
up to 128 devices

112 12. Using USB in the Test and Measurement Environment

USB speeds
The USB 2.0 Specification encom-
passes all USB data transfer speeds:
Hi-Speed (480 Mb/s), full-speed (12
Mb/s) and low-speed (a 1.5 Mb/s
alternative designed for keyboards,
mice, and other low data-rate
devices). Just because a device is
USB 2.0 compatible doesn’t auto-
matically mean it can operate at
480 Mb/s. The best way to verify the
speed of USB devices is to look for
the official USB logo. Devices that
are certified to run at one of the two
original USB rates, 1.5 Mb/s or 12
Mb/s, should carry a white and blue
Certified USB logo (Figure 12.1).
Devices certified to run at 480 Mb/s
rates carry the red, white, and blue
Certified Hi-Speed USB logo.�

The speed rating of hubs in a USB
system determines the operating
speed of the system. For instance, if
you connect Hi-Speed USB devices
through a full-speed hub, the
maximum speed you can expect from
any of the devices is 12 Mb/s, not 480
Mb/s. To take advantage of Hi-Speed
data rates, you must connect these
devices through a Hi-Speed hub.

�	 USB Implementers Forum Web site,
www.usb.org.

Agilent support for USB
instrument connectivity
To provide users with the utmost in
convenience, Agilent has committed
to providing USB connectivity as a
standard feature in nearly every new
test and measurement instrument. In
most cases, new instruments support
480 Mb/s Hi-Speed USB, which
delivers greater bandwidth and lower
latency (the time required to respond
to programming commands) than
GPIB. Those few instruments that
support full-speed USB (12 Mb/s)
offer bandwidth similar to GPIB with
somewhat higher latency.

You can also take advantage of USB
with your existing GPIB instruments.
The Agilent 82357B USB/GPIB
Interface (Figure 12.2) connects
GPIB instruments to a USB port on
your computer, giving you a way to
control up to 14 GPIB instruments
from a laptop or other PC for each
82357B.

Figure 12.1 USB logos identify the device’s
speed rating

The 82357B is a Hi-Speed, fully
compliant, hot pluggable USB device,
so you can connect it whenever
you need it, without rebooting your
PC. Instruments connected via the
82357B have GPIB-style VISA and
SICL addresses, just like Agilent’s
PCI- or older ISA-based GPIB cards,
so legacy programs in systems that
use these cards require no reconfigu-
ration or code changes.

You’re not limited to locally avail-
able instruments, either. With the
Agilent E5813A networked 5-port
USB hub, you can access remote USB
devices or instruments through your
standard LAN. With the E5813A
connected to your PC and properly
configured, those remote instruments
and devices will function as though
they were locally attached.

Agilent also provides a USB solution
for RS-232 instruments. The Agilent
E5805A USB/4-port RS232 interface
provides a direct connection from
the USB port on your notebook or
desktop PC to up to four RS232
instruments or devices.

To simplify programming of instru-
ments over USB connections, Agilent
and other test equipment vendors
co-developed the industry standard
USB Test and Measurement Class
(USBTMC) and USB488 I/O proto-
cols. These protocols, along with
Agilent’s IO Libraries Suite, allow
you to easily switch from GPIB to
USB connections without making big
investments in new PC software or
rewriting existing programs. Aside
from address conventions, your USB
instruments will look and act just as
they would under GPIB control.

Figure 12.2. Agilent 82357B USB/GPIB Interface

113
www.agilent.com/find/open

Setting up USB instruments
with the Agilent IO
Libraries
The Agilent IO Libraries (which is
now included with most Agilent
instruments, T&M software products
such as Agilent VEE Pro and connec-
tivity products such as the 82357B,
E5805A and E5813A) make USB
measurement setups even simpler
by automating the connection and
configuration process for you. The
IO Libraries include three separate
direct I/O Application Programmer
Interface (API) libraries so you can
choose the library that works best
with your development environment:

•	VISA (Virtual Instrument Software
Architecture, an industry stan-
dard application programming
interface)

•	VISA COM (a version of VISA that
conforms to Microsoft’s Common
Object Model and IVI Foundation
standards)

•	Agilent SICL (included primarily to
support existing test systems; VISA
or VISA COM is the recommended
direct I/O API for new system
development)

Connecting instruments via USB
The IO Libraries include the drivers
for USBTMC/USB488 devices as
well as the 82357B USB/GPIB
Interface, so you’re ready to go as
soon as you install the software. As
you start plugging in instruments
(or the 82357B interface), you’ll be
presented with a dialog box that lets
you name each device with a human-
readable USB alias (Figure 12.3). The
alias capability is a helpful way to
manage device names, since the stan-
dard VISA resource naming conven-
tion for USB devices can be rather
cumbersome (USB0::2391::1031::
MY43000786::0::INSTR, for example).

The alias capability also enables the
same test system software to work
on multiple automated test systems,
provided the same alias names are
used, such as the alias “DMM” for a
voltmeter. And if you have an existing
program that communicates with an
instrument over a GPIB or other non-
USB interface, you can create a VISA
alias that looks like a GPIB address,
such as “GPIB1::23::INSTR” and the
program will function as though it

were still communicating over a
GPIB interface.

Additional software included with
the Agilent E5805 and E5813A
works with the Agilent IO Libraries
to provide the same flexibility for
RS-232 instruments and remote USB
instruments. These instruments and
devices appear to be local to the PC
and can be aliased as well.

To verify the connection with each
instrument, simply launch the
Agilent Connection Expert, the
configuration utility in the Agilent
IO Libraries. Refresh the list of
instruments if your instrument is
not already displayed, then choose
“Verify This Instrument.” You can
also launch an interactive I/O session
with the instrument and send the
*IDN? command, the standard
instrument identification query
in the Standard Commands for
Programmable Instruments (SCPI)
command set. The instrument will
respond by identifying its manufac-
turer, model number, serial number,
and firmware revision.

Figure 12.3. Example of the connection dialog in the Agilent IO Libraries

114 12. Using USB in the Test and Measurement Environment

Communicating with
USB-connected devices
You don’t need to worry about the
details of a USB connection, so most
programs written to talk to GPIB
devices work with USB-connected
devices without modification.
However, if your program uses
low-level commands that affect the
entire GPIB bus (such as through a
VISA session such as GPIB::INTFC),
you may encounter some unexpected
results. USB devices are optimized
for modern instrument communica-

tion, which discourages lower-level,
error-prone interface manipulation
operations. Consult the documen-
tation for the instrument or I/O
adapter for any limitations.

As mentioned earlier, an instrument
connected via a USB cable acts like
an instrument connected over a
GPIB bus, aside from a different I/O
address. Here’s some example C code
that communicates with a USB-
connected instrument, either natively
or with the E5813A networked 5-port
USB hub:

#include <iostream>
#include <tchar.h>
#include <stdio.h>
#include “visa.h”

#pragma comment(lib, “visa32.lib”) /* include the visa32.lib
import library */

/* Error-checking routine */
void CHECKERROR(ViSession vi, ViStatus status)
{
	 char desc[256];
	 ViStatus err = 0;
	 if (status < 0)
	 {
		 err = viStatusDesc(vi, status, desc);
		 fprintf(stderr, desc);
		 viClose(vi);
		 _exit(status);
	 }
}

int _tmain(int argc, _TCHAR* argv[])
{
	 char idnResult[256];
	 ViSession rm = 0, funcGen = 0;
	 ViStatus err = 0;
	 viOpenDefaultRM(&rm);
	 err = viOpen(rm, “FuncGen”, VI_NO_LOCK, 0, &funcGen);
	 CHECKERROR(rm, err);
	 err = viPrintf(funcGen, “*IDN?\n”);
	 CHECKERROR(funcGen, err);
	 err = viScanf(funcGen, “%t”, idnResult);
	 CHECKERROR(funcGen, err);
	 printf(“The *IDN? string is %s”, idnResult);
	 viClose(funcGen);
	 viClose(rm);
	 return 0;
}

Similarly, the 82357B USB/GPIB
interface looks and acts like a PCI/
GPIB adapter for typical instrument
communication, so instruments
connected to it have GPIB-style
address names and act like any other
GPIB-connected instruments. The
source code is exactly the same as
above, with the exception that the
instrument address would be some-
thing like “GPIB0::23::INSTR” instead
of “FuncGen.”

115
www.agilent.com/find/open

/* Same header and error-handling code as above... */

/* Do a simple *IDN? Instrument Identification Query */
int _tmain(int argc, _TCHAR* argv[])
{
	 char idnResult[256];
	 ViSession rm = 0, dmm = 0;
	 ViStatus err = 0;
	 viOpenDefaultRM(&rm);
	 err = viOpen(rm, “ASRL1::INSTR”, VI_NO_LOCK, 0, &dmm);
	 CHECKERROR(rm, err);
	 /* don’t bother checking errors for these, nothing will happen until communication is attempted
*/
	 err = viSetAttribute(dmm, VI_ATTR_ASRL_PARITY, VI_ASRL_PAR_NONE);
	 err = viSetAttribute(dmm, VI_ATTR_ASRL_BAUD, 9600);
	 err = viSetAttribute(dmm, VI_ATTR_ASRL_DATA_BITS, 8);
	 err = viSetAttribute(dmm, VI_ATTR_ASRL_STOP_BITS, VI_ASRL_STOP_ONE);
	 err = viSetAttribute(dmm, VI_ATTR_ASRL_FLOW_CNTRL, VI_ASRL_FLOW_DTR_DSR);
	 /* clear out any old data and prepare the instrument */
	 err = viFlush(dmm, VI_IO_IN_BUF_DISCARD | VI_IO_OUT_BUF_DISCARD);
	 CHECKERROR(dmm, err);
	 err = viPrintf(dmm, “*CLS\n”);
	 CHECKERROR(dmm, err);
	 /* do the identification query */
	 err = viPrintf(dmm, “*IDN?\n”);
	 CHECKERROR(dmm, err);
	 err = viScanf(dmm, “%T”, idnResult);
	 CHECKERROR(dmm, err);
	 printf(“The *IDN? string is %s”, idnResult);
	
	 viClose(rm);
	 return 0;
}

In an RS-232 scenario, the E5805A
USB/4-port RS-232 interface will
look like a standard RS-232 port on
your PC, and instruments connected
to it will have RS-232-style address
names and act like other RS-232-
connected instruments:

116 12. Using USB in the Test and Measurement Environment

Conclusion
The low cost and simplicity of
USB—and the dramatic speed
improvements of Hi-Speed USB
make—make USB an ideal connec-
tivity option for simple, ad hoc test
systems. Achieving expected data
rates does require some attention to
the hubs used in a USB system; the
system will operate only as fast as
the fastest hub, so make you’re your
hubs are also Hi-Speed rated. Agilent
offers comprehensive support for
USB-based test systems, including
built-in USB ports in many instru-
ments and support for USB in the
Agilent IO Libraries.

117

13. Using SCPI and Direct I/O vs. Drivers

Introduction
This chapter outlines the relationship
between input/output (I/O) software,
application software and the ability
to maximize instrument interchange
and software reuse in present and
future systems. It builds on the
information presented in Chapters 9
through 12, which provide essential
background on the use of LAN in test
systems.

Deciding how to
communicate
Once you’ve chosen an I/O interface
for your system—GPIB, LAN, USB
or a combination—the next step is
deciding how to enable connectivity
and achieve communication between
the host computer and the instru-
ments in the system. Recently, the
alternatives for connectivity and
communication have been shifting;
vendor-specific commands, libraries
and interfaces are giving way to
industry-standard command sets,
application programming interfaces
(APIs) and instrument drivers.

In system development, the use of
standards offers two key benefits:
it accelerates development by
maximizing software reuse and
it enhances system flexibility by
making it easier to use different
instruments. Standards also help
you achieve your goals for system
functionality and performance by
letting you combine methods such as
direct I/O with Standard Commands
for Programmable Instruments, or
SCPI (see Chapter 3), and instrument
driver-based communication within a
single application.

The best choice of I/O software
depends on factors such as the
number and type of instruments in
the system, the functionality to be
used within each instrument, the
system’s throughput requirements
and the number of systems to be
deployed. It also depends on which
application development environ-
ment you’re using and the current
level of your programming skills.

Sketching the big picture
The diagram in Figure 13.1 is our
starting point. It connects the
conceptual side of the discus-
sion—layers of software and hard-
ware—with the actual test system,
which includes the computer, I/O
cable and test equipment. Within this
model, commands and information
flow from the application through the
software and hardware layers, down
the cable, to the instrumentation and
back again.

Focusing on the upper-left of the
diagram, the application is the
program—purchased, downloaded
or written by you and running on a
programming language—that controls
the test system. The I/O software
layer is the translator that enables
communication between the appli-
cation and the physical I/O hard-
ware—the GPIB, LAN, USB, VXI, PXI
or RS-232 interface in the PC. These
three elements reside within the host
PC and enable connectivity with the
test equipment.

That’s all necessary to enable
connectivity, but it isn’t sufficient to
achieve communication. It’s similar
to the story of placing a phone call
to a friend in another country: you
pick up the handset, hear the dial
tone and dial the number—and
then your friend’s mother answers
the phone. Your inability to speak
each other’s language prevents
meaningful conversation. You have a
connection but you haven’t achieved
communication.

It’s the same with test systems. Even
if an application has connectivity
with an instrument, it must use the
right commands and protocols to
achieve communication, control, data
transfer and so on.

Instrument

I/O Hardware

I/O Software

Application

Figure 13.1. Three essential elements of instrument commu nication reside within the system’s
host PC

118 13. Using SCPI and Direct I/O vs. Drivers

Enabling connectivity
In the early days of automated
testing, system controllers—called
desktop calculators or instrument
controllers— had limited processing
and sparse memory. To keep the
syntax as simple as possible, equip-
ment vendors used short commands,
initially in binary and later in ASCII.

Different manufacturers defined
their own command strings and these
were typically unique to the specific
capabilities of each instrument. In
a system, replacing an instrument
with one from another manufacturer,
or even a new-generation product
from the original maker, could mean
completely rewriting the system
software.�

Instrument commands aren’t the
whole story, however. Enabling
connectivity between a controller
and the system instruments requires
additional layers of software.
Historically, the I/O software layer
contained libraries such as the
Standard Instrument Control Library
(SICL) or NI-488. The application
used these libraries to achieve direct
communication with an instrument.
Each vendor had a proprietary appli-
cation programming interface (API)
that communicated exclusively with
its own I/O interfaces. This made
it difficult for system developers
who were building mixed-vendor
test systems—and, of course, many
systems used (and continue to use)
equipment from multiple vendors.

�	 For more about the evolution of
instrument control, see Chapter 3,
Understanding Drivers and Direct I/O.

Standardizing the API
To make it easier to create mixed-
vendor test systems, a group of
instrument vendors created the
Virtual Instrument Software
Architecture (VISA). This provided
a standardized API that allowed
control of instruments through a
common interface—directly or with
drivers. From the application’s point
of view, every vendor’s VISA inter-
face looks the same.

One important caveat goes with
VISA: Although the VISA API is
standard, each vendor employs
different layers beneath the VISA
layer to control the hardware. In
addition, each vendor may have
made enhancements to enable unique
features in its application layers. To
make it all work, the version of VISA
installed on the host computer must
be compatible with the I/O hardware.
(In contrast, this points to another
advantage of PC-standard I/O such
as LAN and USB: any version of VISA
that supports those interfaces will
work because the low-level drivers
are standardized.)

Expanding freedom of choice
As I/O development was proceeding
in the test and measurement
industry, the PC industry was
pursuing independence in both
I/O and programming languages.
Microsoft created the Component
Object Model (COM), which is a
software architecture that allows
components made by different
software vendors to be combined
into a variety of applications. COM
is not dependent on any particular
programming language.

To incorporate the advantages of
language independence, Agilent
initiated the creation of VISA
COM as a companion to the VISA
standard. VISA COM is an object-
oriented representation of the VISA

API; it exposes the VISA API to the
application layer through use of the
Component Object Model.

The result: VISA COM gives you
the freedom to pick from the most
popular I/O configurations and
also choose from a wealth of “COM
friendly” languages such as C#,
Visual Basic 6 and Visual Basic .NET.
As we’ll discuss later, the application
development environment (ADE)
you choose will influence the best
choice of library and API for your
application.

Achieving communication
Once you’ve enabled connectivity,
it’s time to decide how to achieve
communication between the host
computer and the system instru-
mentation. The two alternatives are
direct I/O and instrument drivers.
Direct I/O creates an explicit connec-
tion to each instrument, which
makes it faster but limits instrument
interchange and software reuse. Most
instrument drivers utilize direct I/O
and SCPI but sometimes hide that
connection. Generally speaking,
drivers trade decreased flexibility
(and possibly speed) for improved
interchange and reusability. However,
in most situations you can use
both instrument drivers and direct
I/O to achieve the best balance of
speed, flexibility and measurement
functionality.

Standardizing direct I/O
An early attempt at improving
consistency and ease of use came
in 1989 when Hewlett-Packard�
introduced an instrument commu-
nication language called the Test
& Measurement Systems Language
(TMSL). HP and eight other manu-

�	 HP spun off its test & measure-
ment businesses as part of Agilent
Technologies in 1999.

119
www.agilent.com/find/open

facturers joined forces to generate
a universal approach to instrument
control, using TMSL as the starting
point. SCPI was the result of that
collaboration.

The implementation of SCPI within
an instrument’s firmware has made
the programming syntax for direct I/
O much more robust and predictable.
The syntax defines a strict hierarchy
that specifies consistent commands,
responses and data formats across
instrument models. These commands
and responses are defined for source,
sense and switch devices. Today,
SCPI is still the most-used form of
instrument control (Figure 13.2).

Improving interchange and
reuse
SCPI was a big improvement, but the
subsequent development of instru-
ment drivers has taken interchange
and reuse to new levels. An instru-
ment driver (or just “driver”) is a

high-level, instrument-specific (or
instrument class-specific) piece of
software that enables communication
between a PC and an instrument. For
software developers, drivers often
simplify programming and shorten
development time by guiding the
programmer through the necessary
steps and describing the capa-
bilities of the instrument within the
programming environment (rather
than in a manual, as would be the
case with SCPI and direct I/O).

First-generation drivers were
vendor-specific and typically worked
only with a specific ADE. (Numerous
legacy application programs still use
these proprietary drivers.) Today,
however, three types of standardized
instrument drivers are available.
These work with multiple ADEs
and enable communication with an
instrument through any vendor’s I/O
hardware.

•	VXIplug&play. Originally developed
for modular VXI instruments, these

were later expanded to address
non-VXI instruments. Conforming
drivers always perform I/O
through the VISA library. The
VXIplug&play WIN32 driver
specification works in all popular
languages and is today’s most
widely used driver architecture.

•	IVI-C. IVI-C has two distinct drivers.
The term is generally applied
to drivers based on proprietary
tools from National Instruments
(NI). With the advent of the IVI
standards, NI updated its tools
to conform with the standards,
but many systems based on the
proprietary tools are still in use.
To enable reuse and interchange-
ability, IVI-C requires additional
software to patch around its core
DLL technology, which does not
directly support software inter-
changeability. An application must
call an intermediate driver (an
“IVI-C class driver”) which then
calls the specific instrument driver
to accomplish the function.

Figure 13.2. This block of Visual Basic 6 code uses SCPI and VISA COM I/O to communicate with a function generator.

Dim Fgen As VisaComLib.FormattedIO488
‘ Code removed: Set up the connection to the instrument
With Fgen

	 WriteString “*RST”	 ‘ Reset the function generator
	 IO.Clear	 ‘ Clear errors and status registers
	 WriteString “FUNCtion PULSe”	 ‘ Select pulse waveshape

	 WriteString “OUTPut:LOAD 50”	 ‘ Set the load impedance to 50 Ohms (default)
	 WriteString “VOLTage:LOW 0”	 ‘ Low level = 0 V
	 WriteString “VOLTage:HIGH 0.75”	 ‘ High level = .75 V

	 WriteString “PULSe:PERiod 1e-3”	 ‘ 1 ms intervals
	 WriteString “PULSe:WIDTh 100e-6”	 ‘ Pulse width is 100 us
	 WriteString “PULSe:TRANsition 10e-9”	 ‘ Edge time is 10 ns (rise time = fall time)
	 WriteString “OUTPut ON”	 ‘ Turn on the instrument output

For I = 0 To 18 	 ‘ Vary edge by 5 nsec steps
	 WriteString “PULSe:TRANsition “ & (0.00000001 + I * 0.000000005)
	 Sleep 300	 ‘ Wait 300 msec

Next I

End With

120 13. Using SCPI and Direct I/O vs. Drivers

•	IVI-COM. This standard does the
most to enable interchangeability
and reuse by leveraging the COM
computer standard. IVI-COM
drivers integrate with standard PC
component architecture software
and enable control of instruments
from familiar, conventional ADEs
that provide major productivity
improvements. IVI-COM drivers
that control VXI or GPIB instru-
ments use VISA (either VISA COM
or VISA-C). Because many new
instruments include computer-
standard I/O such as LAN and
USB, IVI-COM drivers for non-GPIB
instruments are not required to
use VISA, although many do.

If you are unsure of which I/O
technology an application or driver
is using, take a look at the connec-
tion string or “instrument address”
used for instrument communication.
VISA-type strings look like “TCPIP:
34980A.tm.agilent.com::inst0::INSTR”
while SICL-based strings are similar to
“lan[34980A.tm.agilent.com]:inst0.”

Exploring the application
alternatives
Shrink-wrapped software often
provides convenience in measure-
ment and analysis at the expense of
performance and flexibility. Such
products are often a good fit with the
small or one-off systems used during
product development. In contrast,
custom-built software is often the
best answer for applications such as
design verification or manufacturing
test that require high performance
and maximum flexibility.

Simplifying basic analysis tasks
There are alternatives to general-
purpose development environ-
ments. One example is “targeted
applications,” which address specific
measurement or technology domains,
or specific phases or tasks in the
product development lifecycle.
These applications include software
designed to make the infrequent
measurements (manual or semi-auto-

mated) that are typically performed
during the early phases of product
development or during design
verification.

Applications such as the free Agilent
IntuiLink connectivity software and
low-cost Agilent BenchLink make
it easy to perform semi-automated
measurements, collect data and
analyze results from a wide variety
of instruments. Both applications
utilize either drivers or direct
I/O—transparently—to enable instru-
ment communication, control and
data transfer.

•	IntuiLink. This connectivity applica-
tion simplifies data transfers by
adding a toolbar to popular PC
applications such as Microsoft
Word and Excel. IntuiLink enables
direct retrieval of data and images
from a measurement instrument,
letting you remain in the PC
application and use its familiar
interface. IntuiLink also eliminates
barriers between instruments and
PCs by supporting GPIB, USB, LAN
and FireWire interfaces.

•	BenchLink. This application is
available in versions that support
numerous instruments. BenchLink
is a Windows-based application
(Figure 13.3) that uses a familiar
spreadsheet format to streamline
data collection, presentation and
analysis. It can communicate
with measurement instruments
via LAN, USB or GPIB using the
included I/O software.

There are higher-cost alternatives
to BenchLink, including instru-
ment-control software for functional
testing and domain-specific applica-
tions. These range from general test
executives to application-specific
programs such as cell phone regula-
tory testing tools. All serve to further
reduce the burden of instrument
programming, connectivity and
communication.

Figure 13.3. Agilent BenchLink Data Logger provides spreadsheet-like test set up and real-time
display and analysis of measurements.

121
www.agilent.com/find/open

Maximizing performance
and flexibility
You can pick from a wide variety
of alternatives that support the
creation of custom measurement
software. These range from test
automation applications to full-
featured development environ-
ments that utilize either graphical
or textual programming. Your
preferred approach will determine
the best choice for instrument
communication.

Microsoft Visual Studio
Visual Studio is a textual program-
ming solution that offers an exten-
sive range of developer tools and
built-in help capabilities that can
accelerate development of Windows-
based applications. Its integrated
development environment provides a
consistent interface for all supported
languages, including Visual Basic,
C++ and C#. As a standardized,
mainstream development product,
Visual Studio offers several
advantages:

•	Open. Because Visual Studio is
based on open, pervasive stan-
dards, it can communicate with
practically any other programming
technology. As a result, thousands
of third-party tools—software,
drivers and so on—are available to
support your development efforts.

•	COM-friendly. Visual Studio works
very well with programming
technologies that are based on
Microsoft’s COM technology. This
includes VISA COM and IVI-COM.

Comparing development
environments
The software environment you
choose will have a significant impact
on the time, effort and cost required
to create and maintain a test system.
Development environments are
either graphical or textual. Graphical
environments such as Agilent VEE
Pro and NI LabVIEW use a schematic
approach, which is regarded as
being easy for engineers to learn.
You manipulate icons or objects that
represent commands or functions
and connect them with program-
flow lines. This makes it easier to
visualize the paths of execution and
interaction; it also shields you from
the underlying syntax. What’s more,
T&M-specific graphical environments
have extensive I/O and instrument
drivers as well as measurement-
related math and graphing capabili-
ties. Graphical programming is best
suited to small- and medium-sized
applications—the visual interface
tends to become difficult to under-
stand with large programs.

In contrast, textual programming has
a steeper learning curve because
it requires detailed knowledge of a
language’s commands and syntax.
However, because most textual
languages are based on open stan-
dards, they offer a greater selection of
development environments, software
tools and training opportunities.
There also tends to be a wider variety
of available third-party drivers, tools
and add-ons. Textual programming
is often the best choice for large,
comprehensive programs because it
is easier to navigate and comprehend.

In the past, textual programming
produced applications that had
pronounced speed advantages—at
runtime—over those created with
graphical programming. Today,
however, there is less difference in
runtime speeds between applications
created with either approach.

•	On-screen help. The IntelliSense
feature and the “F1 help”
capability work with COM- and
.NET-based third-party drivers
and software. As an example, the
IntelliSense window for a driver
will show all available operations,
a brief description of each, and a
summary and description of all
allowed parameters. Depending on
the driver or component, pressing
the F1 key may open a new window
that presents an online help
manual for the driver. Using this
type of on-screen, context-sensitive
help is much faster than thumbing
through a printed programming
manual.

There is one downside in test-system
applications: it can be difficult to
use C APIs with the new .NET-based
languages in Visual Studio. The latest
releases of Microsoft programming
languages utilize .NET technology to
communicate with drivers and third-
party software—and .NET is rapidly
phasing out C API technology. This
affects the C API version of the
VISA I/O library as well as IVI-C and
VXIplug&play drivers. To get around
this problem, Agilent provides a
.NET wrapper for the VISA API. The
wrapper is available as a free down-
load from www.agilent.com/find/iolib;
it is also included in the Agilent IO
Libraries.

122 13. Using SCPI and Direct I/O vs. Drivers

Visual Studio with Agilent T&M
Toolkit
The Agilent T&M Toolkit 2.0 with test
automation extends the .NET-enabled
versions of Visual Studio with a suite
of integrated, easy-to-use software
tools and components—project
wizards, APIs, class libraries,
widgets, graphs, drivers and more.
This creates an environment that
simplifies the process of incorpo-
rating tests and measurements
into custom applications. Using
T&M Toolkit 2.0 within the Visual
Studio environment lets you use
your preferred textual programming
language and integrate your new
code with existing code written in
other languages.

T&M Toolkit 2.0 offers several other
capabilities that speed and simplify
system development:

•	DirectIO class. This is the easiest
way to send commands directly to
an instrument.

•	Wrapped VXIplug&play drivers. This
integrates the drivers into .NET
with full IntelliSense and F1 help
capabilities. T&M Toolkit also
recognizes and uses IVI-COM
drivers, which have IntelliSense
built-in.

•	Instrument Explorer. This tool makes
it easy to see and edit the instru-
ment I/O configuration and initiate
communication with instruments.

•	IO Monitor. This utility makes
it much easier to use instru-
ment-control software and
instrument drivers—IVI-COM and
VXIplug&play—and diagnose prob-
lems by letting you watch both the
underlying direct I/O commands
that are sent to the instrument and
the resulting data that is returned
(Figure 13.4).

In all, the combination of Visual
Studio and T&M Toolkit eliminates
many of the difficulties often associ-
ated with connecting to and control-
ling test equipment from a custom
application.

Agilent VEE Pro
For those who want an alternative to
textual programming, Agilent VEE Pro
is a powerful, easy-to-use graphical
programming environment that accel-
erates the process of building and
programming test systems (Figure
13.5). To create a program, you
choose high-level graphical objects
from a huge library and connect
them with lines or “wires.” The wire
connections specify functionality
and sequences within intuitive block
diagrams. Because VEE Pro is an open,
standards-friendly environment, it
also offers several advantages in test
system development:

Figure 13.4. T&M Toolkit’s IO Monitor traces I/O layers for Agilent’s VISA, VISA COM, SICL and SICL
Detail, helping you find bottlenecks in your source code.

123
www.agilent.com/find/open

•	Direct I/O. Through its easy and
powerful Direct I/O capability, VEE
Pro provides excellent support
of direct I/O for control of any
standard instrument and many
vendors’ PC plug-in cards.

•	Instrument drivers. VEE Pro supports
industry-standard drivers such
as IVI-COM and VXIplug&play.
It includes support for nearly
one thousand drivers, supporting
popular instruments from more
than 70 manufacturers.

•	COM and .NET. No familiarity with
.NET programming languages is
required to utilize these capa-
bilities. VEE Pro takes care of
the details, ensuring successful
interaction with both COM and
.NET software.

Assessing I/O software
alternatives
Our ultimate goal is to minimize the
amount of time you have to spend
sorting out which I/O libraries or
drivers to use in your test systems.
Today, however, that effort is
unavoidable—but we can offer a few
suggestions that will simplify the
process.

Instrument drivers vs. direct I/O
When comparing drivers and direct
I/O, there are two key factors to
consider. One is a tradeoff between
speed of development and speed
of execution: drivers contribute to
faster development while direct I/O
enables faster execution.

The other factor is access to instru-
ment functionality. Drivers typically
cover a subset of an instrument’s
total feature set—and this is often
limited to the most commonly
used functions. In contrast, the
combination of direct I/O and SCPI
commands can typically access 100
percent of an instrument’s program-
mable functions, no matter how
arcane. If you prefer the advantages
of drivers but need to access unsup-
ported features, it is possible to use
both methods within an application.

ADE vs. I/O API
The ADE you select will affect the
best choice of I/O library and API for
your application. Table 13.1 shows
the various I/O APIs that Agilent
supports and, for each ADE, high-
lights the recommended library as
well as the preferred and historical
alternatives.

As one noteworthy example, we
recommend VISA COM over the
VISA API when using Visual Basic
6 because VISA COM is an object-
oriented, hierarchical view of the
VISA API. Using the COM version
means you don’t have to add the .bas
file to the VB project (though the
reference is needed) and VISA COM
allows for the use of context-sensitive
IntelliSense help.

Figure 13.5. With its intuitive graphical programming and extensive support for both direct I/O and
instrument drivers, Agilent VEE Pro simplifies and accelerates test system programming.

124 13. Using SCPI and Direct I/O vs. Drivers

ADE vs. instrument driver
As mentioned earlier, three types of
standardized instrument drivers are
available: VXIplug&play, IVI-C and
IVI-COM. These work with multiple
ADEs and enable communication
with an instrument through any
vendor’s I/O hardware.

Reading from left to right, Table 13.2
shows a continuum that ranges from
least to most standardized across
three generations of drivers—propri-
etary, T&M standard and PC-industry

standard. These represent the
past, present and future of driver
technology.

To accelerate test-system develop-
ment, we recommend using the latest
IVI-COM drivers and VXIplug&play
WIN32 drivers for instrument
control. The IVI-COM driver tech-
nology is the only one built on a
PC-standard architecture. A compo-
nent driver built on COM works in all
popular PC languages and most T&M
languages. What’s more, it utilizes the
most popular types of I/O and can be
used in the latest .NET technologies.

Conclusion
Open standards such as COM and
LAN have achieved widespread adop-
tion in the computer world and are
now shaping the future of test-system
development. Standards accelerate
system development by maximizing
software reuse and enhance system
flexibility by making it easier to swap
out instruments—different models
and even different brands. Standards
also enhance system functionality
and performance by letting you
utilize direct I/O, SCPI and drivers
within a single application.

Your choice of development environ-
ment can make it easier to incorpo-
rate tests and measurements into
custom applications. If you prefer
textual programming, Visual Studio
with Agilent T&M Toolkit eliminates
many of the problems associated
with connecting to and control-
ling test equipment. If you prefer
graphical programming, Agilent VEE
Pro is an open, standards-friendly
environment that supports direct I/O
and instrument drivers as well as
COM and .NET technologies.

Table 13.2. ADEs and their recommended instrument drivers

Proprietary T&M
(specific to one language)

Test & Measurement
(based on T&M standards)

Component PC
(based on PC
standards)

LabVIEW Plug & Play
(VXIplug&play GWIN)
VEE Panel Drivers

LabWindows/CVI Plug & Play
WIN VXIplug&play

IVI-COM

Table 13.1. ADEs and recommended I/O libraries

Programming language Recommended I/O library Supported alternatives
Preferred Historical

Visual Basic .NET, C# and
other .NET languages

T&M Toolkit DirectIO1 VISA COM
VISA

—

Visual C/C++ VISA VISA COM SICL
Visual Basic 6 VISA COM VISA SICL

1 Agilent T&M Toolkit 2.0 is a set of measurement and test tools and components for the Microsoft Visual Studio
.NET development environment. The T&M Toolkit DirectIO class enables instrument connections from within
Visual Studio.

125

14. Using LAN in Test Systems: Applications

Introduction
This chapter offers advice on
balancing cost, convenience and
security in three common LAN
scenarios: sharing instruments,
remote monitoring and data acquisi-
tion, and functional test systems.
These discussions include a look at
the issues of public versus private
networks and wired versus wireless
networks. In addition, advice on
configuring a virtual private network
is provided, along with a comparison
of data rates over various network
and protocol combinations.

Scenario 1: Sharing
instruments
Sharing access to instruments or
devices under test is one of the most
obvious benefits of connecting test
equipment over a LAN and, by exten-
sion, the Internet. However, you need
to consider the security implications
before exposing instruments and test
data to any network and the public
Internet in particular.

Sharing instruments over an
unprotected LAN
The quickest and easiest way to
share test equipment over a network
is to simply plug a LAN-enabled
instrument into the local intranet.
Most intranets will auto-configure
Agilent’s LAN instruments so that
they can be accessed from PCs
by their host name with a VISA
VXI-11 address (such as “TCPIP::
Jeffs_34980a.sanfran.tmresearch.
com::inst0::INSTR”). If the host name
is unknown or the intranet doesn’t
support auto-naming of computers,
instruments can be reached via the
IP address they are assigned by the
local intranet, and local LAN instru-
ments can be automatically found
using the Agilent Connection Expert
utility provided with the Agilent IO
Libraries Suite connectivity software
package.

As noted earlier, most Agilent
LAN-enabled instruments have web
servers built in that allow access to
and control of the instrument from
a remote client via a web page. The
only information required to connect
is the host name or IP address of the
instrument and the only software
required is a web browser. Moreover,
many of these instrument web pages
support simple cut-and-paste opera-
tions for sending data to or retrieving
data from the instrument.

Sharing instruments over a VPN
Although sharing instruments over a
regular LAN is fairly simple, it’s not
secure—and exposing the instru-
ments directly on the Internet is
strongly discouraged. Most modern
LAN instruments have some protec-
tion against the common viruses
and Internet worms, however it is
prudent to protect your equipment
from attack.

You can make a local network secure
through a variety of methods that
isolate it from outside access (see
Chapter 10, Using LAN in Test
Systems: Network Configuration),
although this of course eliminates
the possibility of sharing physically
separated resources.

To accomplish secure, long-distance
sharing, you can deploy a LAN router
that supports virtual private network
(VPN) end-points with roaming
clients. A VPN end-point feature
means that the router can terminate
one end of a secure, virtual “tunnel”
between two points on the Internet
or intranet. These endpoints are
often used to connect geographically
separated offices of an organiza-
tion into one larger, virtual local
area network. In addition, roaming
client capability means that the VPN
end-point is also optimized to allow
remote PCs to create a direct connec-
tion to the router’s VPN end-point,
rather than just having two VPN-
capable routers configured to talk to
each other.

126 14. Using LAN in Test Systems: Applications

Figure 14.1 shows the physical layout
of such a setup, and here are the
basic configuration steps:

1.	 Physically connect the router
and instruments as illustrated in
Figure 14.1.

2.	 Via the web interface or other
means, configure the VPN router’s
basic DHCP (Dynamic Host
Configuration Protocol) and
other network settings to create
a simple, private network on
which the instruments (and PC
clients connected via VPN) can
communicate. See Chapter 10 for
an example configuration.

3.	 Configure the router to have a
VPN end-point to give roaming
users a connection point.
Windows XP and Vista provide
a basic VPN client that supports
the L2TP/IPsec and the PPTP
VPN protocols, so pick a VPN
configuration using one of those
protocols unless you have a
different preferred VPN client.
(See “Configuring a VPN” for
more on choosing a protocol.)

4.	 Configure your PC. For Windows
XP and Vista, use the “Create
New Connection” task in the task
pane of the Network Connections
utility that is accessible from the
Windows Control Panel. When
prompted by the wizard, use the
public IP address or host name of
the router.

5.	 After creating the connection,
right-click the new VPN connec-
tion and configure the VPN type,
tunnel name and password/key
you configured on the router.

A VPN router configuration for
instrument sharing protects the
instruments on the private side of
the router from public intranet/
Internet access but gives PCs config-
ured with the VPN’s parameters and
passwords unlimited access to those
instruments. (Note that for the dura-
tion of the VPN session, the external
client PC has two IP addresses—one
for the VPN connection and one
for the standard intranet/Internet
connection.)

By default, the VPN client PC can
access only the virtual network
behind the VPN router when the
VPN connection is active. However,
it is possible to configure Windows
XP/Vista so that both networks can
be accessed at the same time, with
Windows deciding which connection
to use based on the IP address of the
remote device. VPN routers typically
use non-routable, private network
addresses in the range 192.168.x.x
or 10.0.x.x for the private networks
they create. If the local intranet also
uses private addresses, care must
be taken to configure the subnet of
the VPN router’s private network
so that it doesn’t conflict with the
intranet, otherwise the PC client
won’t be able to route traffic to the
proper network interface (either the
real network interface or the virtual
network interface created by the VPN
connection).

Router
with VPN
endpoint

VPN tunnel

PCs using
the protected,

sharable
LAN instruments

Sharable LAN
instruments

Private
Ethernet

port(s)

Public
Ethernet
port

Corporate intranet and/or Internet

Figure 14.1. Using a VPN router to share LAN instruments securely

127
www.agilent.com/find/open

If you plan to expose instruments on
the Internet via a VPN router, you’ll
need to work with your network
administrators to configure the
firewalls to allow such direct Internet
connections. Your organization may
have specific acceptable hardware
lists or other policies for such
configurations.

Also, when selecting a VPN router,
bear in mind that capabilities and
performance vary. For instance, most
routers support multiple simulta-
neous VPN connections, depending
on the model and the VPN protocol.
However, performance can suffer
if you initiate multiple connections
through a lower-cost router, some
of which have data rates less than a
megabit/second for VPN connections.
Higher-end models have hardware
co-processors that handle the encryp-
tion necessary to make the VPN
secure, which provides better VPN
throughput.

Scenario 2: Remote
monitoring and data
acquisition
The marriage of LAN technology
and LAN-enabled instruments
presents an ideal solution for many
applications in data acquisition and
remote monitoring. For example,
the Agilent 34980A multifunction
switch/measurement unit combines a
built-in digital multimeter, a modular
mainframe that can be reconfigured
for an endless variety of switching
or data acquisition needs and a LAN
port for complete remote control of
the instrument.

Before you deploy a remote moni-
toring or data acquisition solution,
it’s important to temporarily co-
locate the controller PC, the remote
instruments, system wiring, sensors
and any devices under test in order
to complete the initial configuration
tasks. Once these major configuration
steps are complete, you can usually
make most minor changes via the
software in the controller PC.

By keeping the test system controller
nearer to the engineer responsible
for maintaining the data acquisition
system (see Figure 14.2), you can
dramatically shorten the turnaround
time for follow-on configuration
changes. Although this arrangement
results in all the acquired data being
transferred over the network, TCP/IP
and Ethernet are optimized for such
data transfers and there is little or no
performance penalty for keeping the
data acquisition system controller
remote from the data acquisition
instruments.

Remote
router

with VPN
endpoint

VPN tunnelData acquistion
system controller

DUT or data
acquistion

point

Remote data
acquisition
instruments

Private
Ethernet

port(s)

Public
Ethernet
port

Test
engineer

Intranet
(wired or wireless)

and/or Internet

Figure 14.2. Recommended network design for remote monitoring and data acquisition applications

128 14. Using LAN in Test Systems: Applications

Remote monitoring and acqui-
sition over wired connections
If the point of measurement is
physically located near or in the
local corporate intranet, a wired
LAN connection is the best choice. In
most situations, using a VPN router
to provide security is desirable to
prevent unauthorized access to the
measurement equipment and to
prevent infection by viruses. See
Figure 14.1 for the recommended
VPN configuration for such a data
acquisition system.

Remote monitoring and
acquisition over wireless
connections
For a data acquisition point that is
not co-located with your LAN, you
might be able to use a relatively low-
cost wireless LAN (WLAN) solution.
If the data acquisition point is within
10 miles of the nearest line-of-sight
point of the corporate intranet, a
commonly available wireless solution
may be possible. Off-the-shelf, high

gain antennae are available for the
common 802.11b/g wireless Ethernet
standards that can, when properly
paired and aligned, create a long
distance wireless Ethernet bridge
between two points, connecting two
Ethernet networks as though they
were local (see Figure 14.3).

It’s important to note that long
distance WLAN installations require
specialized knowledge and equip-
ment, and they are highly dependent
on terrain and other environmental
factors. Due to FCC restrictions on
unlicensed equipment in the 2.4
GHz radio band in the United States,
the signal cannot be amplified to
achieve greater transmission range,
but effective range can be increased
by using a pair of highly directional
(high-gain) antennae.

Because radio signals in the low giga-
hertz range can be impeded by water,
such signals are prone to degradation
by changes in atmospheric condi-
tions and terrain. Consequently, it
is not safe to assume an “always-on”
connection for a long-distance instal-
lation. This might require keeping

the system controller computer
local to the instruments and point
of measurement so that information
and control is not lost for periods
of time, rather than keeping the
controller local to the test engineer
for easier maintenance.

Choosing a wireless technology
Unfortunately, choosing a WLAN
technology is not a simple matter,
since there is a confusing variety of
WLAN standards, both implemented
and under development. Although all
of these stem from the IEEE 802.11
base standard, you can see from
Table 14.1 that the various single-
letter suffixes represent a variety of
technologies and protocols within the
802.11 framework.

As you plan a wireless implementa-
tion, keep in mind that the data rates
you’ll achieve in a real-world system
are likely to be, at best, half of the
rate of the physical layer speed (5
Mbps for 802.11b, for example). In
addition, signal loss can limit the
speed negotiated between two WLAN
radios, and error correction can
further reduce effective bandwidth.

Paired wireless routers
in 802.11 bridging mode

Wireless bridged Ethernet network

Wireless Ethernet
radio signals

802.11b/g (high gain)
antennae

Bridged
Ethernet

port

Bridged
Ethernet
port

Local corporate
intranet with

data acquisition
system

controller

Remote data
acquisition

system

Figure 14.3. Establishing a remote data acquisition connection via wireless LAN

129
www.agilent.com/find/open

Addressing wireless security
A quick perusal of Table 14.1 should
convince you that security is an
important—and complex—issue in
wireless networking. Authentication
(are all talking parties who they
say they are), encryption (can any
unauthorized listener understand the
communication), and data integ-
rity (can any unauthorized party
interject or change data in a commu-
nication session) are all concerns
when anyone can listen on or talk
through a public medium such as the
airwaves.

The first attempt at a security mecha-
nism for WLAN was wireless equiva-
lent privacy (WEP). At its simplest,
it merely describes an encryption
and data integrity solution through
a private, pre-shared encryption key
of 64 or 128 bits (actually 40 or 104
bits when the initialization vector
is factored out). Add-ons such as
802.1x permit scalable, enterprise-
level authentication. Unfortunately,
a flaw in the WEP design allows it
to be reliably broken if enough data
encrypted with the same encryption
key is intercepted. This means that
any wireless channel encrypted with
WEP could eventually be compro-
mised if enough data passes across
the channel.

Microsoft recommends� deploying
either WEP plus 802.1x or WPA (or,
assumedly, 802.11i when available)
for secure, scalable solutions. Of the
two, only WPA and its successors can
be used securely in non-enterprise-
level installations because 802.1x
relies on a RADIUS server, such as
Microsoft Windows Active Directory
(the technology that centrally
manages Windows passwords
and identities for many corporate
intranets).

�	 Joseph Davies, Deploying Secure
802.11 Wireless Networks with
Microsoft Windows, Microsoft Press
© 2004

Table 14.1. Wireless networking standards

Standard Type Description
802.11b 11 Mbps Ethernet in the 2.4 GHz radio band The most common WLAN standard; being replaced by the faster

802.11g.
802.11g 54 Mbps Ethernet in the 2.4 GHz radio band The fastest-growing WLAN standard; still operates in the crowded 2.4

GHz radio band.
802.11a 54 Mbps Ethernet in the 5 GHz radio band A standard that was approved before 802.11 b/g but has taken longer

to roll out. Its primary benefit is operation in the less crowded 5 GHz
radio band, but it is not capable of the range of 802.11b for the same
power level and is more readily absorbed.

802.11
WEP

Weak wireless security protocol Wired Equivalent Privacy encryption/authentication standard for
802.11 security; has been found to be inherently insecure. If an
unauthorized listener captures enough encrypted data, the encryption
key can be broken and the security compromised. For example, only
a few gigabytes are required to break 128-bit (actually 104-bit) WEP
keys. Automated tools are available for compromising WEP encryption.

WPA Strong wireless security protocol A stronger (as-yet unbroken) encryption and authentication standard
for 802.11; an interim specification until 802.11i is approved.

802.1x Wired or wireless port-based authentication Applies to all Ethernet configurations but is particularly useful for
802.11a/b/g networks. Forces users to authenticate themselves
before being given access to the network, with centralized authen-
tication such as Microsoft Windows Domain servers allowing for
an enterprise-wide solution. In wireless access points that support
it, 802.1x can be used with WEP encryption to auto-generate WEP
encryption keys so that there is a limited period of time that each WEP
key is used, preventing listeners from discovering the WEP encryption
key and thereby compromising security.

802.11i Strong wireless security protocol Sometimes called WPA2, the 802.11 wireless security protocol that
will eventually replace WEP; believed to be secure and unbreakable.

802.11n Up to 540 Mbps Ethernet in the 2.4 GHz radio
band

An emerging standard that will have increased throughput from
802.11g and have greater range than comparable standards.

130 14. Using LAN in Test Systems: Applications

However, WPA may not be avail-
able in all possible configuration
modes for wireless access points.
For instance, in tests at Agilent,
we were unable to use WPA with a
D-Link DWL-2100AP access point in
wireless bridging mode, where two
access points seamlessly bridge the
two networks they connect into one,
larger network. Only WEP security
was available in this mode, and we
have found no commercial products
that claim to implement WPA for
bridging mode. If this remains true
for 802.11i, we recommend either
not using bridging mode for bridging
from your intranet or putting VPN
routers on either side of the wireless
access points to use secure IPSec
communications (see “Peer-to-peer
IPSec tunneling/bridging”) to guar-
antee wireless security will not be
broken (see Figure 14.4 for a sketch
of such a configuration).

Scenario 3: Functional
test systems
Functional test systems represent a
third potential for LAN connectivity.
In addition to the benefits discussed
in earlier chapters, several points
need to be considered when applying
LAN technologies to functional test
systems: security and independence
from network infrastructure, timing
and deployment.

•	Chapter 10 discusses security
and independence from network
infrastructure through the use
of static network configurations
and inexpensive never systems as
required, since the GPIB primary
address is relative to the computer
and the GPIB adapter (as opposed
to being a globally unique number).
The Agilent IO Libraries Suite
brings back some of this simplicity

by letting you assign a friendly
name to each instrument or
resource in the form of an alias.
For instance, you can assign your
function generator any name you
like even though it resides at a
specific IP address.

Paired wireless routers
in 802.11 bridging mode

Wireless bridged Ethernet network

Wireless Ethernet
radio signals

IPSec tunnel

VPN
router

VPN
router

802.11b/g (high gain)
antennae

Ports for
network
#1

Ports for
network

#2
Wired

Ethernet
connection

Wired
Ethernet

connection

Figure 14.4. Wirelessly bridged Ethernet network with VPN tunnel for additional security

131
www.agilent.com/find/open

Configuring a VPN
Although an endless variety of VPN
implementations are available, only
a few criteria need to be considered
when choosing a configuration for
distributed test and measurement
applications: (1) Does the application
require an always-on connection, or
will a temporary connection suffice?
(2) What level of security is required?
Does the system need to be protected
only from inadvertent access
attempts, or is powerful encryption
and security necessary to prevent
deliberate, malicious attacks? (3)
What are the available options in the
desired price and performance range
that meet your other criteria?

This section explores two configura-
tions that can address virtually any
combination of these criteria: client/
server tunneling and peer-to-peer
IPSec tunneling.

Client/server tunneling
Client/server VPN tunnels have
become a popular means to allow
remote access to enterprise
networks. A key advantage of this
method is that it can be used over
the Internet and through routers and
firewalls. VPN tunnels were designed
to minimize the impact of firewalls,
and updated firewalls can be config-
ured to allow VPN tunnels through,
making them the best choice for
exposing instruments securely over
the Internet. Another advantage of
client/server VPN tunnels is multiple,
noncontinuous connections from
clients. Server hardware or software
designed to support such tunnels
allows multiple clients to connect
and disconnect from the VPN server
at random times for random dura-
tions, making these tunnels the best
choice for ad hoc sharing (such as is
common in R&D labs, for instance).

Approaches
Two common approaches to imple-
menting these tunnels are known as
L2TP/IPSec (IP Security with Layer-2
Tunneling Protocol) and PPTP/MPPE
with MS-CHAPv2 (Microsoft Point-to-
Point Encryption over Point-to-Point
Tunneling Protocol with Microsoft
Challenge-Handshake Authentication
Protocol version 2). Each of these
technologies is a combination of a
transport layer and a security layer.
The transport layer packages up
network communication so that it
can be successfully transmitted over
the secured, virtual tunnel between
the client and server. The security
layer provides protection from
deliberate or inadvertent deception
or attacks.

The transport layers (L2TP and
PPTP) provide similar capabilities,
although the newer L2TP is becoming
the more common choice. However,
the security layers present distinct
differences. Of the two, IPSec
provides the best support for
encryption, authentication, and data
integrity; MPPE with MS-CHAPv2 is
considered less secure. In general,
MPPE with MS-CHAPv2 is good
enough for home use and for use over
secured intranets, but IPSec is the
only truly secure choice for use on or
over the Internet.

Implementation notes
Windows XP, Vista, and 2000 offer
built-in IPSec/L2TP and MPPE/PPTP
with MS-CHAPv2 clients as part of
their dial-up networking support,
and all VPN routers have some
combination of IPSec, L2TP, PPTP,
and MS-CHAP protocol support. The
speed of the connection can vary
greatly based on the router’s imple-
mentation, especially if the router
has an encryption co-processor
built in to offload the computational
burden of encrypting the tunneling
data. As you would expect, cost typi-
cally increases with performance and
capabilities.

By default, such VPN configurations
turn off any other Internet connec-
tion when the VPN connection is
active by configuring the default
internet gateway to go through the
VPN connection. If you don’t want
this to happen, configure the VPN
tunnel to manually create the neces-
sary TCP/IP routing information so
that only information addressed for
the private network across the VPN
tunnel is sent across that tunnel, and
all other network connections are
sent through the primary network
connection.

To provide a working example
of client/server VPN tunnel
configuration, we’ve posted detailed
instructions and open-source,
contributed utilities for establishing
an MPPE/PPTP with MS-CHAPv2
VPN Tunnel between a Windows
2000/XP client and a D-Link™
DI-804HV VPN server at www.agilent.
com/find/adn_vpn_examples.

132 14. Using LAN in Test Systems: Applications

Peer-to-peer IPSec
tunneling/bridging
IPSec provides its own tunneling
mode where two networks are
virtually joined by establishing a
secure tunnel between the network
endpoints on a larger network,
such as a corporate intranet or the
Internet. The networks that the
tunnel endpoints connect can be
anything from a single computer to a
large corporate LAN. This tunneling
mode is designed for permanent
network configurations between two
points with known IP addresses or
host names (making it peer-to-peer,
rather than a client/server archi-
tecture). An example application of
IPSec tunneling would be to virtually
connect two campuses of an organi-
zation via an IPSec tunnel over the
Internet so that the two ends of the
tunnel are combined into one large,
secure virtual LAN.

There are a few situations where
IPSec tunneling is the preferred
choice. Because of the always-on
configuration of this tunnel, IPSec
tunneling is a good choice for virtu-
ally connecting a set of measurement
hardware and a controller/monitor,
such as in a test system with a
remote controller or a remote data
acquisition application (see Figure
14.5). Because the endpoints of the
tunnel can be networks of devices,
IPSec tunneling is a good choice for
connecting two separate test systems
or permanently connecting a test
system controller.

IPSec tunnels may not work across
corporate firewalls, so the tunnel
end-point hardware may have to be
exposed to the Internet to allow such
tunnels to be connected over the
Internet.

As part of its IPSec feature set,
Windows provides the capability
for IPSec tunneling, although their

configuration tools are too complex
to use without instructions or
experienced help. However, the
Windows implementation is very
flexible and powerful, allowing traffic
destined for the private network
behind the remote IPSec endpoint to
be automatically encrypted and sent
over the tunnel and all other TCP/IP
traffic to continue to its destination
unimpeded.

Many VPN routers also have IPSec
tunneling support, with varying
degrees of configuration help. VPN
routers without a hardware encryp-
tion co-processor can be an order
of magnitude slower than the most
powerful, more expensive routers
with an encryption co-processor
built-in. Configuration informa-
tion and contributed utilities for
configuring an IPSec tunnel between
a Windows 2000/XP client and a
D-Link DI-804HV router are also
available at www.agilent.com/find/
adn_vpn_examples.

IPSec endpoints
(routers, computers, etc.)

Wireless bridged Ethernet network

VPN tunnel

Corporate intranet
and/or Internet 0 or more

private
Ethernet
port(s)

0 or more
private

Ethernet
port(s)

Public
Ethernet
port

Public
Ethernet

port

Private
network #1

Private
network #2

Figure 14.5. IPSec VPN combining two private networks

133
www.agilent.com/find/open

infrastructure to connect to the
instrument. Using an 802.11g wire-
less Ethernet bridge did incur a small
performance penalty, as it is limited
to 54 Megabits per second, less than
the 100 Mbps LAN. In contrast, using
the encryption features of the D-Link
DI-804HV VPN router caused some
of the slowest results because this
model does not have a data encryp-
tion co-processor, meaning that the
encryption of the data packets has to
be done by the router’s primary CPU.

Comparing network
performance
As you would expect, various
networks have different performance
characteristics, based on a combina-
tion of the underlying technology and
the specific details of each vendor’s
implementation. Moreover, various
instruments behave differently
depending on the I/O connection type
as well. Figure 14.6 compares the
data rates measured while uploading

a waveform from a PC to an Agilent
33220A function generator over a
variety of transports/ networks. (The
results include the time necessary to
upload the waveform, plus the time
it took to receive a response from the
instrument that it had successfully
received the data.)

As you can see from the chart, using
a second PCI LAN card to create a
private LAN incurs no extra cost
compared to using the primary LAN
card and the corporate intranet’s

1400

1200

1000

800

600

400

200

0
0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

Waveform size in bytes

100 Mbps LAN

2nd PCI LAN card with 100Mbps switch

802.11g bridge with 128-bit WEP

PCI/GPIB card

IPSec tunnel to DI-804HV

PPTP tunnel to DI-804HV

USB 2.0

USB 1.1/GPIB converter

PPTP tunnel over 802.11g bridge with WEP

K
B

/s

Figure 14.6. Comparative data rates over vrious network/transport schemes

134 14. Using LAN in Test Systems: Applications

Conclusion
LAN is a powerful, compelling choice
for many test and measurement
tasks and systems, but engineers
need to be aware of its limitations
and complexities to create reliable,
long-lasting configurations. The
huge variety of LAN media, devices,
protocols and technologies mean
that a large body of complete tools
and solutions is available to choose
from when designing test systems.
Picking the right technologies to use
and deploy is essential to developing
the best system in the least amount
of time.

135

15. Using LAN in Test Systems: Setting Up System I/O

Introduction
This chapter describes the compo-
nents of the Agilent IO Libraries
Suite and presents a quick, six-step
process that will make LAN-based
instrument connections as simple as
using GPIB.

Simplifying LAN-based
instrument connections
The advantages of LAN technology
are making it an attractive alterna-
tive to GPIB for system input/output
(I/O). As a result, LAN interfaces
are becoming more common in test
equipment—though LAN ports will
likely coexist with GPIB for years to
come.

On the surface, the presence of LAN
ports in most current-generation PCs
and many new-generation test instru-
ments may make connections seem
as simple as finding a network cable
and plugging it into both devices.
Today, making the connection work
depends on the LAN services of
Microsoft Windows and the addi-
tional capabilities provided by the
Agilent IO Libraries Suite. A quick,
one-time configuration process will
make LAN-based instrument connec-
tions as easy as using GPIB.

Once the IO Libraries Suite is
installed and configured, it acceler-
ates the connection process with
software libraries and utilities that
let you quickly connect instruments
to a PC, configure and verify the
connections, and get on with your
job—whether it entails the creation
of instrument-control software or
the use of pre-existing application
software.

Assessing the Agilent IO
Libraries Suite
Agilent IO Libraries Suite is a
collection of libraries and utili-
ties that make LAN, USB, VXI and
GPIB connections equally easy to
use within your test system. The
libraries provide the ability to access
instruments from software programs
that perform test and measurement
(T&M) operations. The utilities
enable quick, easy connections of
instruments to a PC by helping you
debug test programs and diagnose
problems in a test system.

The IO Libraries Suite is included
with more than 150 Agilent instru-
ments as well as the Agilent VEE
and Agilent T&M Toolkit software
products. The IO Libraries Suite also
works with instruments and software
from other vendors.

As an introduction to the IO
Libraries Suite, let’s take a closer
look at its three major components:
Agilent IO Libraries, Agilent
Connection Expert and the I/O
utilities.

Agilent IO Libraries
The suite includes three separate
I/O libraries. Each provides similar
functionality that lets you program-
matically control instruments, send
commands to them and receive
responses and data.

Agilent VISA
Agilent’s implementation of the
Virtual Instrument Software
Architecture (VISA) is an industry-
standard I/O application program-
ming interface (API). You can use
it to develop I/O applications and
instrument drivers that will be
interoperable with applications from

many vendors. These applications
and drivers will also comply with IVI
Foundation standards for instrument
communication and control. The
current version of Agilent VISA is
backwards compatible with previous
versions.

Agilent provides both the C API
version of VISA and VISA COM.

Agilent VISA COM
This is a Microsoft Component Object
Model (COM) implementation of the
VISA standard; it is based on the
Agilent VISA architecture. Agilent
VISA COM also conforms to IVI
Foundation standards.

Agilent SICL
Many test systems still rely on the
Standard Instrument Control Library
(SICL), which Hewlett-Packard (now
Agilent) developed to make software
as I/O-independent as possible.
This modular library for instrument
communication works with a variety
of computer architectures, I/O
interfaces and operating systems. We
include it in the IO Libraries Suite to
enable compatibility with customer’s
legacy programs.

In most cases, we now recommend
VISA over SICL. The exceptions are
applications that require capabili-
ties such as parallel polling that are
unique to SICL.

Suggested approach
If you are developing new test and
measurement applications, we
generally recommend VISA and VISA
COM as the most effective solutions
for instrument I/O. The best choice
of I/O library depends on your
preferred programming language,
refer to Table 13.1 on page 124 for
recommendations.

136 15. Using LAN in Test Systems: Setting Up System I/O

Agilent Connection Expert
The Agilent Connection Expert
(Figure 15.1) is a software utility
that helps you connect instruments
to a PC—via GPIB, LAN, USB, RS-232
or the VXI interface—in just a few
minutes.

You can use Connection Expert to
speed and simplify several essen-
tial configuration tasks: configure
instrument I/O interfaces; connect
to instruments over the LAN;
automatically discover instruments
connected directly to the PC; and
browse the test system’s structure
and connections (PC, interfaces and
instruments). Connection Expert also
helps you detect and troubleshoot
connectivity problems, either during
the configuration process or later
when the system is in use.

To enhance program portability and
readability, Connection Expert also
lets you create programming aliases
for each instrument in the system.
The ability to update an alias with
a new IP address or hostname can
make it easier to handle system
migration and changing network
settings.

Connection Expert also improves
user productivity by including an
on-screen task guide that provides
shortcuts to common tasks and
frequently needed information.

I/O Utilities
A set of six software utilities
enhances your ability to quickly
configure and debug instrument-to-
PC connections:

•	Interactive IO. Lets you query
instruments one command at a
time and view the response to each
command. This utility can help you
learn an instrument’s command set
or prototype commands and check
the instrument’s responses before
you write any code.

•	Remote IO Server. Enables connec-
tions to instruments that are
physically connected to another PC
on the network. When the Remote
IO Server is running on one PC
(the server) you can use instru-
ments connected to that server
from separate client PCs by using
Connection Expert to configure
remote interfaces on the clients.

•	ViFind32 Debug Utility. When called
from a script, viFind32 uses
VISA functions to find available
resources and then list them in
a console window. This utility is
useful for verifying that Connection
Expert has configured all expected
interfaces, and that the expected
devices are all attached.

•	VISA Assistant. Included with older
versions of the IO Libraries and
provided in the latest version
as a convenience. Most of its
capabilities are replaced by either
Connection Expert or Interactive IO.

•	VXI Resource Manager. Used to
configure the Agilent E8491 IEEE-
1394 PC link to VXI interface in
systems that include modular VXI
hardware.

•	IO Control. Provides easy access to
all of the IO Libraries Suite utilities
and the associated documentation.
The IO Control icon appears in the
Windows notification area (Figure
15.2), enabling a quick launch
whenever you want to use the
utilities.

Figure 15.1. Agilent Connection Expert’s easy to follow tree view helps you see connected devices
instantly

Figure 15.2. The IO Control icon resides in the
Windows notification area.

137
www.agilent.com/find/open

Connecting instruments
to LAN
We suggest a six-step process that
will help you quickly connect and
configure your LAN-enabled instru-
ments. The specific tasks in Steps
2 through 4 depend on whether
the instruments are connected to
a site LAN or a local, private LAN
(these are defined in Step 2). The
procedures presented here focus
on the private LAN case, which
is our recommended approach. If
your situation dictates the site LAN
approach, please see Chapter 2 of the
Agilent Connectivity Guide, which is
included with the IO Libraries Suite
and is also available at www.agilent.
com/find/iolib.

Step 1: Install I/O software
The first step is to install the Agilent
IO Libraries Suite on a PC that meets
the minimum system requirements
and is running a supported version
of Microsoft Windows: 98 Second
Edition; 2000 with SP4 or later;
Millennium Edition (Me); or XP with
SP1 or later. For the latest informa-
tion about PC requirements, please
visit the IO Libraries Web page at
www.agilent.com/find/iosuite and
download the latest version of the
product data sheet.

If you don’t have the software, you
can get a copy from www.agilent.
com/find/iosuite by downloading it
or requesting a CD (see Web site for
licensing restrictions). Once you have
a copy of the software on or in your
PC, the InstallShield Wizard will
guide you through the installation
process. (For a detailed description
of the software installation process,
please see Chapter 6 of the Agilent
Connectivity Guide.)

Step 2: Select network type
Once you’ve installed the I/O soft-
ware, the next step is to decide if you
will connect the system instruments
and PC to a site LAN or a private LAN.

In this chapter we define a site LAN
to be an enterprise LAN, a corporate
intranet or a workgroup LAN. This
type of LAN may carry a tremendous
amount of data traffic—and network
congestion can severely hinder test
system performance. A site LAN may
also be more susceptible to viruses,
Trojans, worms and other threats
that pose a security risk to sensitive
data. Physically, this type of connec-
tion may involve the direct connec-
tion of the PC and instruments to the
site LAN or a switched connection
through a hub, router or switch.

A private LAN is a standalone
network reserved exclusively for use
by the test system. It is protected
from site LAN traffic (and security
risks) by either a router or a PC
configured with two LAN cards.
The latter configuration will also
include at least one hub, switch or
router if the system uses multiple
instruments. A private LAN imple-
mented with either configuration
is our recommended approach.
For a detailed description of both
approaches, please see Chapter 10,
Using LAN in Test Systems: Network
Configuration.

A single instrument can also be
connected directly to the PC with
a crossover Ethernet cable. These
cables are usually bright yellow
to distinguish them from regular
Ethernet cables. This method
requires a second LAN card in the PC
if the primary LAN card is already
connected to the enterprise LAN.

138 15. Using LAN in Test Systems: Setting Up System I/O

Step 3: Gather network
information
With a private LAN configuration
you, as the network designer, are
effectively the system administrator
and can define network parameters
that best suit your test system.

One of the key details is support for
Dynamic Host Configuration Protocol
(DHCP), which automatically assigns
IP addresses to devices on the
network.� In general, a router-based

�	 Most PCs and most Agilent instru-
ments will use a function called
auto-IP to automatically assign an
IP address if they are configured for
DHCP but cannot connect to a DHCP
server.

private LAN will support DHCP but
not Dynamic Domain Name Server
(Dynamic DNS), a service that maps
specific names to IP addresses and
enables use of names in place of IP
addresses in test-system programs.�

The key information to be gathered
or defined is summarized in Table
15.1. You’ll want to make a copy of
the card for each instrument that
will be connected to the test system’s
private LAN.

�	 Some of Agilent’s LAN-enabled
instruments may be addressable
by hostname via NetBIOS, an older
networked PC protocol that is still
supported by Windows and works
with most LANs.

Step 4: Connect your
instruments
This step assumes that the PC’s
hardware and software are properly
configured for LAN operation and the
PC is connected to the private LAN.

As mentioned above, this configura-
tion uses either a router or a PC
configured with two LAN cards and
a LAN device such as a hub, switch
or router. Before connecting any
instruments, turn off the power to
all instruments. Next, connect each
instrument to the LAN device with a
standard CAT5e Ethernet cable then
turn on power to each instrument.
Verify the completion of the power-on
sequence for each instrument and, if
anything seems unusual, refer to the
instrument’s user’s guide for detailed
information.

Table 15.1. Private LAN information card

Network	 DHCP enabled	 Yes ____ No ____
	 Dynamic DNS enabled	 Yes ____ No ____
	 UPnP enabled OK	 Yes ____ No ____
	 Subnet mask	 ______.______.______.______
	 DNS server IP address	 ______.______.______.______
PC	 Ethernet (MAC) hardware address	 ____ ____ ____ ____ ____ ____
	 IP address	 ______.______.______.______
	 Subnet mask	 ______.______.______.______
	 DNS server	 ______.______.______.______
	 Hostname	 __________________________
	 Domain name	 __________________________
Instrument	 Instrument serial number	 __________________________
	 Ethernet (MAC) hardware address	 ____ ____ ____ ____ ____ ____
	 IP address	 ______.______.______.______
	 Subnet mask	 ______.______.______.______
	 DNS server	 ______.______.______.______
	 Hostname	 __________________________
	 Domain name	 __________________________
	 DHCP	 On ____ Off ____
	 Auto IP	 On ____ Off ____ N/A ____
	 UPnP	 Enabled ____ Disabled ____ N/A ____

Hostname versus
IP address
We recommend that you configure
LAN instruments with a hostname
and use it to connect to them
whenever possible. IP addresses
assigned by DHCP can change
without warning, breaking estab-
lished connections to your instru-
ments. If your network doesn’t
support connecting by hostname, we
recommend the use of a statically
configured IP address for each instru-
ment. If any of your instruments are
connected to the site LAN, you will
need to ask your network adminis-
trator to provide static IP addresses
for those instruments.

139
www.agilent.com/find/open

Step 5: Configure your
instruments
Configuration may not be necessary
for the latest generation of LAN-
enabled instruments. In general,
the default configuration of these
instruments is compatible with the
procedures presented here.

For current-generation instruments
with modified LAN configurations
or older instruments that require
manual configuration, you will need
to enter a few quick changes via the
front panel or a Web browser. Most
LAN-based instruments have a built-
in Web server, making it possible
to access an instrument’s internal
Web pages (Figure 15.3) and, in most
cases, view and modify the network
configuration parameters as needed.

Making changes via the built-in
Web server begins by entering
the instrument’s IP address into
the browser’s address box (e.g.,
http://192.168.1.200) and pressing
Enter. This should display the
instrument’s welcome page, which
may provide links to other pages.
Access the page that displays the
current LAN configuration and then
modify the instrument’s TCP/IP
parameters as necessary: this may
require changes to the IP address,
subnet mask and default gateway.3 To
complete the process, you may have
to save the changes then reboot the
instrument by turning power off then
on again.

Step 6: Run Agilent Connection
Expert
With Steps 1 through 5 completed,
you’re ready to launch Agilent
Connection Expert. Click on the
Agilent IO Control icon in the
Windows notification area then select
Agilent Connection Expert (or click
“Refresh All” if Connection Expert
is already running). You can now
perform additional tasks related to
LAN-enabled instruments: add a LAN
instrument to the system (manda-
tory), configure a LAN interface
(optional) or communicate with any
connected instrument via Interactive
IO (optional).

Add a LAN instrument. Whether an
instrument resides on a private or
site LAN, there are several ways
to add the instrument to your test
system. You may also use any of
these methods to make a change to
any instrument that is already part
of the system.

When using Connection Expert, the
key concept is the “local subnet,”
which is typically the portion of your
intranet connected to the private or
non-enterprise side of the nearest
router. To prevent disruptions of
network traffic beyond the router—
and avoid excessively long searches
across the entire LAN—Connection
Expert can only discover instruments
automatically within the local subnet.
To communicate with remote instru-
ments (those on the other side of the

router) you must be able to specify a
hostname or IP address in the LAN
Instrument dialog box.

•	Local subnet instrument. When an
instrument is on the local subnet,
the easiest way to add the instru-
ment to the test system is to ask
that Connection Expert discover it.
This eliminates the need to specify
the instrument’s hostname or IP
address.

•	Non-local subnet instrument. After
you enter an instrument’s host-
name or IP address, Connection
Expert will try to open a connec-
tion to that instrument on the LAN.
If it succeeds, it will perform the
same bus addressing procedures as
it would for a local instrument.

Configure a LAN interface. If you select
the LAN interface in the explorer
pane, the properties pane will
display the current properties for
that interface. The properties pane
displays the most commonly accessed
properties at the top and provides a
“More” button that will display addi-
tional properties in the lower portion
of the pane. Clicking on the Change
Properties button will display a
dialog box that lets you modify
configuration parameters such as
interface ID (used by VISA and SICL)
and timeout values. The online Help,
available from the Help button in
each dialog box, gives information on
each configuration parameter.

3 	 Individual instruments will respond
differently to these changes. In most
cases the new settings will not take
effect until you cycle the instrument’s
power off then on. Some instruments
may change the IP address imme-
diately and you will have to enter
the new address into the browser’s
address box before making additional
changes.

Figure 15.3. Browser-accessible welcome page for the Agilent 33220A function/arbitrary waveform
generator

140 15. Using LAN in Test Systems: Setting Up System I/O

Communicate via Interactive IO. You
can use this software utility from
within Connection Expert (or from
IO Control) to verify communication
with instruments via LAN:

•	Interactively send commands and
view responses without writing
program code

•	Quickly verify connectivity to an
instrument

•	Troubleshoot communication
problems

•	Learn the instrument’s command
set

•	Rapidly prototype commands and
check the instrument’s responses
before you begin writing code

You can start Interactive IO from
within Connection Expert in one
of three ways: by clicking the Send
commands to this instrument task in
the task guide; by clicking Tools then
Interactive IO on the Connection
Expert menu bar; or by right-clicking
the instrument in the explorer panel
and selecting Send Commands To
This Instrument.

Conclusion
Connecting instruments to LAN is
almost as simple as plugging in a
network cable if you take advantage
of the libraries and utilities that
are part of the Agilent IO Libraries
Suite and follow the quick, six-step
configuration process described in
this chapter. Once that process is
completed, GPIB, LAN, USB and
other standard interfaces are equally
easy to use within a test system.
What’s more, included tools such as
Agilent Connection Expert and a set
of six I/O utilities make it easy to
configure, debug and troubleshoot
those connections.

Coexisting with other versions of VISA
Although the VISA API is a standard, each vendor employs different layers beneath
the VISA layer to control their hardware. For proper operation, the version of VISA
installed on the system’s host PC must be compatible with the I/O hardware.

Fortunately, it’s possible to perform a side-by-side installation of Agilent VISA with
other VISA libraries and achieve proper I/O operation. For example, you can use
Agilent VISA and National Instruments’ NI-VISA in the same PC.

The VISA standard requires that visa32.dll, the dynamic-link library that implements
the VISA interface, be installed in specific locations. Thus, only one installed
implementation can fully comply with the standard at one time.

To avoid conflicts, the Agilent IO Libraries Suite gives you the option to install
Agilent VISA in side-by-side mode. In this case, Agilent VISA is installed in a
different location and does not overwrite any other VISA already present on the PC.

After installing Agilent VISA in side-by-side mode you can use either the Agilent or
NI VISA library in your programs. The side-by-side installation allows you to choose
which VISA library you link your program against so you can take advantage of the
support and features of each vendor’s VISA implementation.

If you choose to use Agilent interface hardware in a program linked against
NI-VISA, IO Libraries Suite online Help can guide you through the configuration
of NI-VISA. This is the easiest way to use your VISA code without rebuilding your
program. (NI-VISA does not allow side-by-side mode by default and must be manu-
ally enabled.)

If you use NI GPIB cards and devices, you don’t need to install NI-VISA. Instead,
you can simply install NI-488.2 as a driver for these devices and avoid the complica-
tions of side-by-side operation. You could then use Connection Expert to configure
Agilent VISA to use the NI GPIB card.

Whenever you mix interface hardware from different vendors, it’s best to configure
each device using the configuration tools from its manufacturer. NI interfaces
should be configured with the NI MAX utility prior to use. Agilent interfaces are
automatically configured when you install the IO Libraries Suite, but if you add a
new interface or decide to change interface properties, use Agilent Connection
Expert.

141

Section 3. LXI: The Future of Test

Overview
The four chapters in this section
introduce the features and
benefits of LXI (LAN eXtensions for
Instrumentation), a new standard
that combines the functionality and
PC-standard connectivity of stand-
alone instruments with the modu-
larity and compact size of plug-in
cards—but without the size or cost of
a cardcage.

16.	 Value, Performance and Flexibility:
the Promise of LXI, provides an
introduction to LXI, presents
its advantages, and outlines LXI
usage models that expand the
reach, capabilities and definition
of test systems.

17.	 Transitioning from GPIB to LXI,
compares GPIB and LXI, sketches
hybrid system architectures,
outlines a step-by-step approach
to system set-up, and describes
how to easily modify existing
system software to work with LXI
devices.

18.	 Creating Hybrid Test Systems with
PXI, VXI and LXI, compares PXI
and VXI with LXI, sketches
hybrid system architectures
that incorporate your existing
test assets and describes what
will be possible in the future as
you migrate to fully LXI-based
systems.

19.	 Assessing Synthetic Instruments,
presents a brief history of
synthetic instruments (SIs),
compares a rack-and-stack system
to an SI-based system, describes
the initial applications of SIs
and illustrates the emulation of
conventional instruments with
SIs.

142 Section 3. LXI: The Future of Test

143

16. Value, Performance and Flexibility: The Promise of LXI

Introduction
This chapter provides an intro-
duction to LAN eXtensions for
Instrumentation (LXI), reviews
why test managers are looking for
an alternative to conventional test
architectures, presents the advan-
tages of LXI, offers a closer look
at the LXI standard, and outlines
usage scenarios that expand the
reach and capabilities—and perhaps
the definition—of test systems. Two
appendixes discuss the concept of
synthetic instruments and LXI’s role
within the Agilent Open development
strategy.

Why test managers are
asking for a new approach
Test managers across many indus-
tries face several of the same issues:
shorter launch windows, reduced
staffing, dwindling software exper-
tise, smaller development budgets,
and outsourced (or offshore) manu-
facturing. Most are looking for the
same solution: a more cost-effective
way to develop test systems.

An obvious first step is to reduce
the cost of instrumentation. The
overhead costs of current modular
systems—cardcages, slot-0 control-
lers, proprietary interfaces, and so
on—shrink the budget available for
actual measurement hardware. Also,
if the cardcage is filled, the addition
of just one more device to the system
requires an additional cardcage.
Similarly, because most PCs now
include USB and LAN interfaces,
it seems wasteful to require the
additional cost and complexity of a
measurement-specific interface.

In the big picture of system develop-
ment, however, cost effectiveness
goes far beyond simply lowering the
cost of test instrumentation. Even if
GPIB, PXI and VXI hardware were
free, developers would still face six
challenges that affect the cost-effec-
tiveness of system creation: reuse,
set-up time, system throughput,
system size, consistency and
future-proofing.

•	 Reuse. Developers seldom have
the luxury of building a test
system with all-new hardware
and software. As a result, many
systems include a collection of
instruments that use different I/O
interfaces and command sets. It
can be difficult to reuse existing
instrumentation and test-system
code without tools that simplify
instrument connectivity and
control in the PC environment.
The challenge of reuse extends to
software too, of course. It’s difficult
to leverage software and ensure
measurement integrity across
the product lifecycle if different
types of instruments are used in
each phase. This is especially true
if testing shifts from benchtop
instruments in R&D to modular
instruments in manufacturing.

•	 Set-up time. System set-up can be
time consuming, especially when
you’re trying to get the PC to
communicate with the instruments
or get the instruments to work with
the system software. It’s even more
time consuming with systems that
include multiple interfaces: GPIB,
RS-232C, VXI, PXI, MXI, FireWire,
USB or LAN. Add to that multiple
I/O libraries and instrument
drivers from multiple manufac-
turers, and it may take days or
weeks to troubleshoot the system
and get it to work as expected.

•	 System throughput. In time-critical
applications, every millisecond
counts. However, improving overall
system throughput requires
more than just a fast backplane.
Bottlenecks may occur in test
routines, measurement algorithms,
data transfers, the sequencing of
system tasks and more.

144 16. Value, Performance and Flexibility: The Promise of LXI

•	 System size. Whenever systems must
be shipped elsewhere or deployed
where floor space is at a premium,
system size matters. Unfortunately,
with existing approaches, this may
also mean sacrificing functionality,
performance and accuracy as the
system shrinks.

•	 Consistency. In systems that require
source, measure, power and RF/
microwave capabilities, developers
often need to mix two or more
of the current instrumentation
standards. This type of inefficiency
also affects cost effectiveness.

•	 Future-proofing. With limited versa-
tility, existing test architectures
make it difficult to meet future
needs—higher frequencies, greater
accuracy, faster throughput and so
on. As more systems are deployed
to remote locations, they become
increasingly difficult to manage
and troubleshoot without onsite
expertise. In addition, test systems
often remain in service longer than
the lifetime of most backplanes and
interfaces. Computer backplanes—
ISA, EISA, VME, PCI, and Compact
PCI—change every few years but
usually offer little or no backward
compatibility. The instrumentation
versions (VXI and PXI) have the
same drawback. To compound the
problem, standardized test and
measurement interfaces such as
GPIB and MXI have fallen short of
both the increased speed and wide-
spread adoption of LAN and USB.
Instead, new GPIB or MXI cards
must be developed and purchased
whenever computer architectures
change.

There are also a few issues specific
to each of today’s three major legacy
test-system architectures.

•	 GPIB. Although this remains the
current instrumentation standard,
it has slower data transfer rates
than other architectures, forces
you to install an interface card in
your PC, requires expensive cables,
and allows only 14 devices on the
bus.

•	 VXI. This architecture requires
an expensive cardcage, a slot-0
controller and an expensive,
proprietary interface (MXI).

•	 PXI. In addition to the VXI over-
head costs mentioned above, PXI
has issues with size, power and
EMI that limit the range of solu-
tions to those normally covered
by PC plug-in cards. PXI is also
transitioning to PXI Express,
limiting the longevity of PXI
modules or requiring expensive
hybrid mainframes.

Addressing the challenges
with LXI
To help test system engineers over-
come all these drawbacks, Agilent is
leading the way to a new vision for
test systems.

Building on the widespread
LAN foundation
Many current-generation instruments
include LAN ports (see Figure 16.1),
and LXI is the next logical step in the
evolution of LAN-based instrumenta-
tion. LAN is gaining momentum in
T&M because it has several inherent
advantages over most parallel and
serial interfaces. For example, LAN
can handle an unlimited number of
nodes and provides long distance
inter-device connectivity. It also
includes TCP/IP error checking and
fault detection—and these functions
minimally impact throughput rates.�

Better still, LAN enables automatic
device discovery, addressing, asset
management and network manage-
ment. LAN also has a cost advantage:
the prices of cables, interface cards,
hubs, routers, switches, wireless
access points and so on are low and
continue to fall.

�	 This is especially true if the test
system uses a dedicated network. To
learn more about creating private
networks for test systems, please see
Chapter 10.

Figure 16.1. Current-generation instruments
such as the Agilent 34980A switch/measure
unit include LAN, USB and GPIB interfaces.

145
www.agilent.com/find/open

These advantages come from the
computer industry’s substantial
investment in networking technology.
A big part of that investment is in
brainpower: the computer industry
employs far more design engineers
than the T&M industry. Since 1980,
their efforts have boosted Ethernet
speeds by three orders of magnitude,
from 10 Mb/s to 10 Gb/s. Even more
impressive, they have preserved
backward compatibility as speeds
have increased. In comparison, T&M
standard interfaces such as GPIB
and MXI have not kept pace with the
speed, capabilities or compatibility
of LAN.

Rather than inventing yet another
proprietary standard, it makes
far more sense to ride the wave
of LAN innovation. By leveraging
PC-standard technologies, T&M
equipment makers can focus on what
they do best, which is provide great
measurements.

The LAN interface becomes “GPIB
easy” when used with innovative
software products such as the
Agilent IO Libraries Suite, which
simplifies connections between
PCs and LAN-enabled instruments.
Looking to the future, adding the
enhancements defined by the LXI
standard will let test engineers
take even greater advantage of this
powerful I/O connection.

Extending LAN for
instrumentation
The LXI vision starts with full-
fledged instruments packaged in
easy-to-integrate modules that
utilize PC-standard I/O. LXI can be
packaged in larger sizes with front
panels and displays, or integrated
into smaller, faceless modules. It
also includes hardware and software
building blocks that enable rapid
arrangement and rearrangement of
functional building-block modules
known as synthetic instruments
(see Appendix 16A) that increase a
system’s flexibility while reducing
its size and cost. By specifying the
interaction of proven, widely used
standards such as Ethernet LAN,
Web browsers and IVI drivers, LXI
enables fast, efficient and cost-effec-
tive creation and reconfiguration
of test systems. LXI combines the
measurement functionality and PC-
standard input/ output (I/O) connec-
tivity of standalone instruments with
the modularity and compact size of
plug-in cards—but without the size or
cost of a cardcage.

The promise of system longevity
has inspired over 50 companies to
join the LXI Consortium including
all the largest test & measurement
companies (see sidebar). Agilent and
others introduced the first wave of
LXI-compliant products in September
2005. As the number of available LXI
devices continues to grow, you will be
well-equipped to take the next step
beyond GPIB, PXI and VXI.

The LXI standard enables long-lived
instrument and system implementa-
tions by relying on the stability of
computer and networking standards,
and by freeing system developers
from proprietary standards that
often fall behind in performance and
functionality.

The LXI Consortium
The LXI Consortium is a not-for-
profit corporation that coordinates
the efforts of leading companies in
the T&M industry. Its driving goal
is to ensure a consistent, positive
user experience through hardware
and software interoperability. The
consortium aims to achieve this
goal by developing, supporting and
promoting the LXI standard. The
formation of the consortium was
driven by the realization that several
companies were developing LAN-
based measurement modules.

Ultimately, many agreed that it made
sense to abandon multiple incompat-
ible approaches and instead combine
their efforts into an industry standard
that will better serve the present and
future needs of T&M customers. To
learn more about the LXI Consortium,
visit www.lxistandard.org.

146 16. Value, Performance and Flexibility: The Promise of LXI

The advantages of LXI
LXI’s visionary approach delivers
numerous benefits in virtually every
aspect of system design, implementa-
tion, operation, and maintenance. By
addressing all of the shortcomings
described earlier with other architec-
tures, LXI does more to help you
reduce the expense and effort required
to create cost-effective test systems.

Ease of use
The LXI standard address ease of use
for system developers in a variety
of ways, including harnessing the
Ethernet standard, enabling easy
interaction via Web browsers, making
programming more efficient with
standard drivers and simplifying
physical integration.

Harnessing the Ethernet standard
LXI includes some key elements
that simplify the use of LAN in test
systems:

•	 Physical layer. To help ensure
successful instrument interac-
tion, the LXI standard specifies
automatic negotiation of LAN
transmission speed and duplex
communication. The standard also
recommends Auto MDIX, a feature
that enables the use of either
straight-through or crossover LAN
cables in direct controller-to-instru-
ment or peer-to-peer connections.
The instrument automatically
adjusts to the existing cable and its
communication counterpart.

•	 Network (IP) layer. LXI instruments
support automatic IP configura-
tion through a DHCP server (often
available in managed corporate
networks and in cable/DSL
routers) or through dynamic
configuration of local addresses

(typically used in small or ad-hoc
networks). LXI also recommends
support for DNS, which instru-
ments can use to publish their
host name through a DNS server
(another feature usually available
in corporate networks).

•	 Application layer. LXI-compliant
instruments support the VXI-11
protocol (based on remote proce-
dure calls) for automatic discovery
of new instruments and identifica-
tion through the *IDN? query.

Enabling easy interaction
A few noteworthy instrument
control features help LXI surpass
GPIB in ease-of-use. For example,
LXI devices include a built-in Web
server to enable configuration and
troubleshooting. In many Agilent LXI
products, the instrument page also
allows interactive instrument control
and monitoring, a capability that can
be very useful during system configu-
ration and deployment. It also
simplifies remote troubleshooting.

Making programming more efficient
For programmatic control, you can
use IVI instrument drivers (see
Chapter 3). Recommended by the LXI
standard, IVI-COM drivers are based
on the widely used Microsoft COM
architecture and work with today’s
most popular test software environ-
ments. These object-oriented drivers
use a hierarchical API, making it
easy to utilize the advanced features
of modern, object-oriented environ-
ments. One key example is easy navi-
gation through a driver’s hierarchy
of functions and simplified coding
via autosuggestion and autocomple-
tion. Agilent LXI instruments also
support ASCII-based SCPI commands
for programming flexibility and to
support non-Windows environments.

Simplifying physical integration
The LXI standard also includes
an optional mechanical specifica-
tion that simplifies the integration
of modules within system racks.
Compliant modules are full- or
half-rack wide and standard EIA
heights (e.g. 1U, 2U). The standard
also specifies that signal input and
output connectors (and status lights)
are placed on the front of the module
while power, Ethernet, triggering and
other control connectors are placed
on the rear.

Reducing set-up time
Through proven standards such as
Ethernet and IVI drivers, LXI ensures
that everything is compatible—and
setup will take less time. Because
Web pages built into every LXI
instrument, a standard Web browser
is all you need to view device
information, change its configuration
and even monitor results and control
measurements (in many Agilent LXI
devices). You can also use proven
tools such as LAN hardware, LAN
cables and ping servers to communi-
cate via LAN and troubleshoot local
or remote systems.

Flexibility
LXI’s modular approach makes it
easy to mix and match modules
that provide the exact functionality
required for each system or applica-
tion. LXI-compliant instruments
provide new levels of flexibility in
hardware selection, product testing,
software reuse, instrument commu-
nication and even organizational
responsiveness.

147
www.agilent.com/find/open

Addressing multiple testing needs
The LXI standard spans classic
instruments, faceless modular
instruments, and functional
building block modules (synthetic
instruments or SIs). Broad-based
support from major instrumentation
vendors means you will be able to
address your full range of testing
needs—source, measure, RF/micro-
wave, switching and power—with just
one architecture. Even when space
is at a premium, you don’t have to
sacrifice functionality, accuracy or
performance.

Even better, you won’t have to
sacrifice your existing test assets.
To help you create hybrid systems
that use LXI-based devices alongside
GPIB, PXI and VXI hardware, Agilent
offers a range of I/O gateways and
converters. Bringing your system
software forward to work with LAN
requires nothing more than simple
address changes.

Testing all along the lifecycle
The various forms of LXI devices also
make it easier for you to test your
product across its entire lifecycle.
In many cases, a classic instrument
can be used on the bench while
an equivalent faceless instrument
can be used in a rack in the final
test system— without rewriting the
system software. This concept can
be extended with synthetic instru-
ments: through the necessary SI
hardware and software modules, a
few functional building blocks can do
the work of multiple RF/microwave
instruments.

Working independently
With their embedded processors,
today’s test instruments have
enough computing power to carry
out measurement tasks on their
own, freeing the system controller
for other tasks. LXI uses this power
to provide greater flexibility in
communication, too: instruments
can communicate without arbitra-

tion through the system controller.
Instead, they can use TCP for peer-
to-peer communication and UDP for
multicast (one-to-many) messages.

Boosting team efficiency
LXI also helps you address future
organizational needs. Test-system
experts are becoming scarce in
many organizations and can’t be
everywhere at once—onsite, offshore
or anywhere in between. With LXI,
you can place test systems virtually
anywhere on your intranet, enabling
your team to perform centralized
troubleshooting, remote monitoring
and more.

Modularity and scalability
Scalability means buying just what
you need when you need it—and
being able to easily expand the
system in the future. With LXI, scal-
ability follows from modularity. This
truly modular architecture lets you
freely mix and match different types
of measurement resources and add
measurement channels, digital I/O
lines, switches and signal sources as
you go.

In PXI and VXI, if a cardcage is filled,
the addition of just one more device
to the system requires the addi-
tion— and additional cost—of another
cardcage. Because LXI modules don’t
require a cardcage, there is no hard
limit to the number of devices you
can add to a system. In practice, you
will instead be limited by factors
such as rack space and the number of
ports available on a hub or router.

Performance
Test-and-measurement interfaces
such as GPIB and MXI are chal-
lenged by the need for increasing
bandwidths and faster data-transfer
rates. One key advantage of LXI is its
ability to leverage ongoing innova-
tions in LAN that satisfy the need for
speed.

LXI makes it possible to build
high-speed distributed systems
that utilize intelligent instru-
ments communicating with each
other—without PC intervention—and
operating in parallel. Everything will
stay synchronized through the use of
the IEEE 1588 timing and synchro-
nization standard (see “Precise
Synchronization” on page 149),
LAN-based triggers, peer-to-peer
and multicast messaging, and the
hardware trigger bus. These capabili-
ties offer new ways to build highly
efficient test systems that deliver
dramatic improvements in overall
system throughput.

Moving more megabytes
With a Fast Ethernet connection
(IEEE 803.2u, 100 Mb/s), the
maximum payload data rate is
approximately 12.5 MB/s. Gigabit
Ethernet (IEEE 802.3z), which is
recommended by the LXI specifica-
tion, boosts top-end performance
by a factor of ten to approximately
125 MB/s.� Looking ahead to 10 Gb
Ethernet, LXI will be able to surpass
the performance of VXI 3.0 (160
MB/s). The backward compatibility
of the various Ethernet standards is
an added bonus that contributes to
system longevity.

Raw network speed isn’t the only
consideration: simultaneous commu-
nication on any network can cause
degradation in performance due to
collisions and retransmission. To
avoid or limit this effect, we recom-
mend the creation of a local subnet
dedicated to the test system.

�	 Assuming IPv4 and maximum frame
size, the bandwidth remaining for
application data is about 95 percent
of the transmission rate.

148 16. Value, Performance and Flexibility: The Promise of LXI

Accelerating system throughput
Other aspects of LXI enhance
performance by enabling faster
system throughput. For example, LXI
makes it possible to build high-speed
distributed systems comprised of
intelligent instruments that can
communicate with each other and
operate in parallel. Devices stay
synchronized through the IEEE
1588 timing standard, LAN-based
triggers, peer-to-peer and multicast
messaging, and a hardware trigger
bus. IEEE 1588 also accelerates
throughput via time-based triggering,
which initiates instrument opera-
tions at a specific time rather than
after a trigger or command.

Distributed applications
Unlike cardcage-based systems,
LXI modules can be easily distrib-
uted in a test rack, across a lab or
throughout a building. This allows
you to place instruments where
they can best meet the needs of
each measurement or application.
Examples include the monitoring
systems used in environmental
applications, power generation
and the process-control industry.
Another intriguing example is testing
of wireless base stations: protocol
test equipment can be placed near
or inside base stations located many
miles apart.

With LXI, these solutions can be
designed using the same instruments
you would use for local applications
and rack-based systems. There is no
need to create custom gateways—
remote access comes without extra
effort. Using your corporate intranet
or the public Internet, large distances
can be bridged easily and the connec-
tion is transparent to the end user.

Of course, security is a concern
for any application that requires
a connection outside your secure,
well-controlled corporate network.
Rest assured that solutions designed
for the IT world also work with
LXI. You can utilize routers that
include security features such as
access filtering based on MAC or IP
addresses, WLAN encryption and
so on. If a distributed application
needs to access the public Internet,
you can use a virtual private network
(VPN) to send IP packets securely,
encrypted through IPsec or other
encryption protocols.

Leverage and longevity
In general, test systems address two
large classes of devices: long-lived
and short-lived products. Many
devices developed for aerospace and
defense applications require test
systems that are easy to maintain
and update far into the future. In
contrast, rapidly evolving commer-
cial wireless products require test
systems that can be developed
rapidly and within budget—and be
easily reused as the products evolve.
The ability to meet the needs of
either long- or short-lived devices
improves with LXI, which is designed
to fulfill the promise of long-lived
measurement hardware, I/O and
software.

This need for stability is in sharp
contrast to the rapid innovation
cycles in today’s computer buses. For
example, in just a few years instru-
ments based on computer buses have
had to change from ISA to EISA to
PCI and now to PCI Express (a serial
bus not compatible with previous
parallel implementations).

In comparison, Ethernet is an
extremely stable standard. Like
GPIB, it’s more than 30 years
old—and Ethernet is clearly here
to stay. With its stability and other
virtues, Ethernet has been adopted
in many industries, including corpo-
rate communications, consumer
electronics, industrial automation
and now test equipment.

Ethernet is also a living, evolving
standard. It has accommodated the
addition of higher-layer protocols as
well as enhancements such as Gigabit
Ethernet at the physical layer and
IPv6 at the network layer. Amazingly,
these enhancements have retained
backward compatibility, protecting
investments in previous versions of
the standard.

Extending the life of LXI systems
In addition to the continued evolu-
tion and assured compatibility of
LAN technology, two additional ideas
extend the life of LXI systems in
particular: the ability to download
new capabilities or personalities
into intelligent instruments and the
possibility of injecting updated or
upgraded technology into SI-based
systems. These capabilities simplify
the task—and reduce the cost—of
keeping pace with evolving measure-
ment standards, wider frequency
ranges and tighter accuracy require-
ments. Taking a wider view, LXI
enables new levels of versatility by
making it possible to configure or
reconfigure a system through soft-
ware changes to IEEE 1588 clocking
and LAN triggering.

LXI also helps you address future
organizational needs. Test-system
experts are becoming scarce in
many organizations and can’t be
everywhere at once—onsite, offshore
or anywhere in between. With LXI,
you can place test systems virtually
anywhere on your intranet, enabling
your team to perform centralized
troubleshooting, remote monitoring
and more.

149
www.agilent.com/find/open

Reusing existing instruments and
software
The various forms of LXI devices
make it easier for you to test your
product across its entire lifecycle. In
some cases, a classic instrument can
be used on the bench or in a rack to
develop and refine test routines that
can then be used with an equivalent
faceless instrument in the final test
system. This concept can be extended
with synthetic instruments: through
the necessary SI software modules, a
few functional building blocks can do
the work of multiple RF/microwave
instruments.

Agilent also offers a range of I/O
gateways and converters that make
it easy to create hybrid systems that
include LXI-based devices and your
existing test assets. Bringing your
system software forward to work
with LAN requires nothing more
than simple address changes.

Cost
LXI offers potential cost savings
throughout the lifecycle of your
systems. Those savings start with
the ability to incorporate, rather
than replace, much of your existing
instrumentation. Unlike other archi-
tectures, LXI isn’t an “all or nothing”
proposition. You can manage the cost
of transition by using devices such
as the Agilent E5810A LAN/GPIB
gateway to create hybrid systems
that include existing GPIB-only
equipment alongside LXI-based
instrumentation.

When you’re ready for an all-LXI test
system, it is likely to be less expen-
sive than a system based solely on
GPIB, VXI or PXI. This is especially
true when compared to VXI and PXI
because LXI doesn’t require costly
cardcages, slot-0 controllers or
proprietary interfaces and cables.

The LAN interface required for LXI
is a standard, no-cost feature of
most PCs. Also, LAN infrastructure
such as hubs, switches and routers
is either already available or can be
purchased at very moderate cost.
For example, Fast Ethernet routers
are available for less than US$75 at
consumer electronics stores.

LXI also lets software developers
leverage their existing investments
because test routines written for
standalone instruments will also
work with faceless modular equiva-
lents. System integration is also
faster because LXI utilizes the host
PC’s LAN interface and Web browser;
no time is spent installing and
configuring a GPIB or MXI interface
or installing software instrument
front panels.

LXI-based remote devices provide
a low-cost, portable way to deploy
sensors, cameras, microphones
and more. Benchtop implementa-
tions provide accurate, cost-effec-
tive instruments with built-in
LAN connections (Figure 16.2).
Intelligent instruments can receive
new measurement capabilities and
personalities via download, enabling
reuse for a variety of applications.

In addition to these initial savings,
LXI can help reduce support and
maintenance cost through its
enhanced ease-of-use, flexibility and
stability.

Precise synchronization
Measurement accuracy depends on
precise synchronization of every
device in a test system. While
LAN technologies are excellent for
communication and control, their
timing specifications are not strin-
gent enough for measurement appli-
cations—especially in distributed
systems. The IEEE 1588 standard,
through its precision time protocol
(PTP), addresses this shortcoming.

The underlying technique—developed
by Agilent Labs—relies on system
devices that contain real-time clocks
and, via the PTP, enables system-
wide synchronization

In a typical LXI-enabled distributed
application, the system will include
intelligent instruments capable of
performing measurement tasks on
their own, independent of the system
controller. To make this approach
practical, the instruments will
typically include a local clock that
enables them to time-stamp measure-
ments and events.

When the synchronization process
begins, those devices identify the
most accurate clock in the system
and assign it the role of master clock.
Figure 16.3 illustrates the rest of this
elegantly simple process.

Figure 16.2. Classic instruments such as the Agilent 34980A
multifunction switch/measure unit offer LXI compliance

150 16. Value, Performance and Flexibility: The Promise of LXI

1.	 The master clock sends a sync
pulse and the current time
to every other device on the
network. All slaves set their
clocks to the master time.

2.	 Each slave sends a time-stamped
reply to the master. The master
calculates the offset between the
original transmission time of the
sync pulse and the various
reception times.

3.	 The master sends an offset value
to each slave, which adjusts
its clock to compensate for the
difference between the master’s
sync pulse and its reception time
at the slave. After this initial
alignment, periodic sync pulses
are enough to keep the slaves
precisely synchronized to the
master clock. The result is a test
system that can address the most
demanding distributed measure-
ment applications.

What’s especially appealing about
IEEE 1588 is that it works across
Ethernet—the same Ethernet being
used for instrument control. No
additional cables are required.
Depending on the size of the network
and its variation in latency times,
it is possible to achieve precise
synchronization of LXI devices
located anywhere on a network—local
or remote.

To learn more about IEEE 1588, visit
the National Institute of Science
and Technology (NIST) Web site at
http://ieee1588.nist.gov.

Security
Security risks can be minimized
through simple precautions such as
creating a private, protected LAN.
The standard capabilities of most
Windows PCs and many low-cost
networking products enable two
viable approaches to security: one is
built around a router (with built-in
firewall) and the other is based on
a PC equipped with two LAN cards.
For a detailed description of both
approaches, please see Chapter 10.

A closer look at LXI
The LXI standard defines instrument-
specific requirements needed to
ensure reliable, accurate operation
in a system environment:

•	Cooling

•	Triggering

•	Interrupt handling

•	Mechanical interfaces

•	Software interfaces

•	Electromagnetic and radio
frequency interference

•	Network routing and switching

•	Discovery

•	Synchronization across multiple
devices

LAN is at the heart of LXI. However,
instead of modifying existing
standards, LXI clearly specifies the
interaction of proven standards in
five areas: physical implementa-
tion, Ethernet, programmatic
interface, instrument pages and
synchronization.

Figure 16.3. In an IEEE 1588-enabled network, a simple process ensures precise synchronization
between all devices

C
Master clock

A
(slave)

B
(slave)

D
(slave)

E
(slave)

2: Reply 2: Reply
2: Reply

3: Offset1: Sync

2: Reply

Switch/router

151
www.agilent.com/find/open

Physical implementation
To achieve physical consistency, the
LXI standard begins with IEC-
standard rack dimensions. To help
simplify system integration and
implementation, it also recommends
the placement of various connections
(Figure 16.4). For example, compliant
instruments use the front panel for
signal inputs and outputs plus indi-
cator lights for LAN, power and IEEE
1588 (synchronization). The rear
panel is used for hardware triggering,
power input and Ethernet communi-
cation. Each LXI module must meet
worldwide standard cooling and EMI
shielding specifications.

The LXI standard defines three types
of instruments that can be readily
mixed and matched within a test
system.

•	 Class C. This is the base class and
includes all of the requirements for
the LAN interface and protocols,
LAN discovery, IVI driver interface
and instrument pages plus recom-
mendations for power, cooling, size,
indicators and a reset button. Class
C devices are standalone or bench-
type instruments that replace GPIB
with LAN and harness the full
breadth of LAN’s capabilities. They
also utilize a Web interface (with
XML) for instrument set-up and
data access. To simplify program-

ming, Class C instruments provide
an IVI driver API (application
programming interface). Today,
most instruments meet the class
C specification. Over time, more
instruments will implement Class
B and A capabilities.

•	 Class B. These devices are designed
to enable simple synchronization
and distributed measurement
systems. They meet Class C
requirements and add IEEE 1588
synchronization. Class B also adds
peer-to-peer and multicast LAN
messaging (required in Class B and
A, permitted in Class C).

•	 Class A. Devices in this category
satisfy Class C and B requirements
and add a hardware trigger bus.
This bus enables triggering of LXI
instruments in close proximity.
Similar to the VXI backplane
bus, the trigger bus is an eight-
line, differential-voltage bus that
enables precise timing accuracy
and dynamic trigger reconfigura-
tion for co-located instruments.

Physically, standalone LXI instru-
ments may be full- or half-rack width
and tall enough to accommodate
the front-panel display and keypad.
Modular LXI instruments (without
a display or keyboard) are typically
half- or full-rack width and just 1U or
2U high.

Although not mentioned in the
standard, LXI enables leverage from
classic instruments into faceless
modular instruments and synthetic
instruments. Agilent is already
moving in this direction with the
introduction of synthetic instruments
based on popular benchtop RF and
microwave products. By using the
same measurement hardware in
both classic and modular instru-
ments, we’re boosting your ability to
leverage test software as the system
evolves.

Ethernet
LXI uses the IEEE 802.3 networking
standard to define the appropriate
connections, protocols, speeds,
addresses, configuration and default
conditions that must be implemented
to ensure a consistent—yet easy-to-
use—test system.

•	 Connections. LXI devices use
standard RJ-45 connectors and
implement Auto-MDIX to sense the
polarity of LAN cables (through or
crossover).

•	 Protocols. Compliant devices are
required to implement TCP (trans-
mission control protocol), UDP
(user datagram protocol) and IPv4
(Internet protocol version 4). TCP
is the standard Internet protocol
that will be used most often in
peer-to-peer messaging while UDP
is a low-overhead protocol that
will be typically used for multi-
cast messaging when high speed
delivery is critical.

•	 Speeds. The standard recommends
use of 1 Gb Ethernet (and permits
100 Mb) with auto-negotiation
to ensure that devices use their
optimum speed.

Figure 16.4. The LXI standard strives for physical consistency that simplifies system integration
and implementation

Trigger bus
(Class A)

Height
(IEC rack units)

Width
(IEC full- or half-rack)

Indicator
lights

Signals

Power
(100-240Vac)

Ethernet 802.3
(RJ-45)

Shielding
Cooling

152 16. Value, Performance and Flexibility: The Promise of LXI

•	 Addresses. LXI devices must
support IP addresses (assigned
by the server), MAC addresses
(assigned by the manufacturer)
and hostnames (assigned by the
user).

•	 Configuration. Compliant devices
must support ICMP (ping server),
DHCP-based assignment of IP
addresses, manual Domain Name
Server (DNS) and Dynamic DNS.
Because DNS can translate domain
names into IP addresses, it can
contribute to the longevity of
system software: IP addresses may
change but domain names will not.

•	 Default conditions. As a safeguard,
LXI defines a set of default LAN
conditions and requires a “LAN
configuration initialize” (LCI)
switch that will reset a device to
this set of known conditions.

Programmatic interface
Because the LXI standard
requires that all devices have an
Interchangeable Virtual Instrument
(IVI) driver, it allows you to use
whichever programming language or
development environment you prefer.
IVI-COM and IVI-C are well-estab-
lished industry standard drivers that
instrument makers supply with their
products.

The LXI standard also mandates that
compliant devices implement LAN
discovery, which enables the host PC
to identify connected instruments.
Currently, the LXI standard requires
use of the VXI-11 protocol, which
defines LAN-based connectivity for
all types of test equipment, not just
VXI. Going forward, future revisions
to the LXI standard may include
other proven discovery mechanisms
such as Universal Plug&Play (UPnP).

Instrument pages
Every LXI-compliant device must
be able to serve its own Web page.
This page provides key informa-
tion about the device, including its
manufacturer, model number, serial
number, description, hostname,
MAC address and IP address. The
standard also requires a browser-
accessible configuration page that
allows the user to change parameters
such as hostname, description, IP
address, subnet mask and TCP/IP
configuration mode. Accessing these
Web pages is as simple as typing
the instrument IP address into the
address line of any web browser.

Agilent’s LXI-compliant instruments
go beyond the LXI requirements,
providing monitor and control
capabilities (see Figure 16.5). For
example, you can set up a DMM,
command it to start making measure-
ments and then read the results.
Some of our LXI devices even allow
you to download complete measure-
ment personalities (for CDMA, GSM,
or Wi-Fi, for example) into the instru-
ment and perform specific measure-
ments with one command. The ability
to control an instrument through its
browser interface opens up a realm
of new possibilities for test engineers
who need a simple way to access test
systems from virtually anywhere in
the world.

Trigging and synchronization
One especially intriguing aspect of
LXI is its triggering and synchroni-
zation capabilities. LXI provides a
variety of optional triggering modes
that are not available in GPIB, PXI
or VXI.

The three classes of LXI devices
implement these capabilities to an
increasing degree. As an example
of what is possible with LXI, all
Class B and A LXI instruments
(optional in Class C) can utilize
triggers embedded in LAN packets
that can originate from any device
on the network—a PC or another
instrument. One device can send a
multicast message that triggers all
instruments on the network without
the need for a real-time computer.
Peer-to-peer messages can enable
measurement scripts or cause data
to be passed from one LXI device
to another without involving the
system’s host computer (a potential
communication bottleneck).

Figure 16.5. LXI specifies an informative instrument page that can be accessed with a standard
Web browser

153
www.agilent.com/find/open

Exploring new possibilities
with LXI
LXI-compliant devices open up a
number of useful new possibilities
that are difficult—and in some cases
impossible—to implement with
traditional rack-and-stack or card-
cage systems. The following examples
are not meant to define the complete
set of possibilities: they are simply an
initial set of concepts that will grow
as the use of LXI spreads.

Easier transitions
One of the biggest challenges in a
new product’s lifecycle is the transi-
tion of its test system from develop-
ment to manufacturing. With LXI,
this transition can be achieved much
more easily and cost effectively than
with cardcage-based systems.

As an example scenario, engineers
can utilize standard instruments
during the R&D phase, using the
display and keypad to quickly
access a wealth of measurement
and analysis capabilities. In manu-
facturing, a system containing the
same LXI instrument in a faceless,
modular form can use the software
and test routines developed with the
standalone instrument. Unlike VXI or
PXI, this ensures instrument-equiva-
lent precision and performance while
also eliminating the overhead of a
cardcage and proprietary interface.

Enhanced throughput
The flexibility of LXI provides two
ways to boost system throughput.
In one scenario, software routines
can be run within the LXI module,
perhaps performing basic analysis
functions and simply passing results
(rather than data blocks) to the host
PC. If necessary, advanced routines
can be run in the PC, which will
typically have greater computational
power than most LXI modules. In the
other scenario, peer-to-peer commu-
nication between LXI modules can
be used to coordinate their activities,
eliminating bottlenecks that could
occur if all messages were handled by
the host PC.

Multi-site collaboration
When a geographically distributed
team is working on a one-of-a-kind
prototype, LXI makes it possible for
team members to make measure-
ments from their desk, wherever it
may be. To help ensure system secu-
rity, standard security procedures
can be implemented, such as using a
firewall and virtual private network
(VPN). Typically, most LXI devices
will be part of a system that has a
dedicated LAN, but remote users
can gain secure access to the system
through its host PC.

Synchronized systems
With the timing capabilities of Class
A and B LXI devices, it’s possible to
synchronize multiple systems within
a building, between sites or around
the world. This is enabled by IEEE
1588, which has the ability to achieve
millisecond accuracy among devices
located anywhere on the network.
Possible applications include trend
and cause-and-effect analyses driven
by data from multiple instruments or
systems. By time stamping all of the
data, it can then be correlated and
analyzed in one or more computers
to identify trends or cause-and-effect
relationships.

Distributed testing
Current-generation systems use a
PC-centric approach in which the
computer controls basic instruments
and “dumb” devices. The PC sends
commands and uses wait statements
or queries to determine when an
operation is complete—and all data
returns to the PC through a dedi-
cated I/O port. This is fine for small
systems but can become slow and
inefficient in larger systems that use
four or more instruments. While the
speed of the I/O connection plays a
role, successful operation requires a
skillful programmer who can manage
the flow of both control and data.

Next-generation systems, as
embodied in LXI, make it possible
to apply a distributed approach that
utilizes the intelligence of the instru-
ments. Much of the analysis and
synchronization can be performed
in the measurement hardware,
offloading these chores from the PC.
Data flow is reduced because only
the results of the analysis are sent
to the PC. Timing is simplified with
LXI Class B and A devices that can
start their activities at a specific time
or based on messages from other
instruments. Instruments also can
exchange information using peer-to-
peer and multicast messaging. With
this architecture, the PC and its I/O
path are less likely to become bottle-
necks in large, complex systems.

Long-distance operations
Through the LAN interface, LXI
makes it possible to place instru-
ments far from the PC and from each
other. As an example, instruments
can be placed near the devices or
processes they are monitoring or
controlling—and be connected to
existing LAN ports in a test lab
or near a manufacturing line. LXI
devices can even be placed inside a
text fixture, minimizing cable runs
and enhancing measurement results.

154 16. Value, Performance and Flexibility: The Promise of LXI

Expert troubleshooting
Whether a system is located in the
next room, the building next door or
a site halfway around the world, your
system developer (or product expert)
can check its operation and trouble-
shoot problems. No travel is required:
simply type an instrument’s URL
or IP address into a standard Web
browser and the instrument page will
appear.

Intelligent instruments
Without the size restrictions of
VXI and PXI, LXI enables use of
intelligent instruments within a
system. You can download measure-
ment personalities into a spectrum
analyzer, sophisticated signals into
an arbitrary waveform generator
or complex power sequences into a
programmable dc supply—and let the
instrument handle the details. The
capabilities built into these instru-
ments help you save time, too.

You can reduce programming time
by taking advantage of the soft-
ware (and firmware) developed by
the vendor rather than writing it
yourself. Instrument set-up time can
be reduced by creating configurations
in advance and recalling them as
needed. Data transfers take less time
because the instrument can make
measurements, perform the required
analysis and then send results—not
large data blocks—to the host PC.

Rapid reconfiguration
LXI-based synthetic instruments
reduce system size and cost by
utilizing multi-purpose modules—
digitizers, waveform generators,
upconverters, downconverters and
more—that can be combined to create

traditional instruments such as spec-
trum analyzers, signal generators and
oscilloscopes. These fundamental
building blocks depend on PC
software that dynamically aggregates
and “synthesizes” different measure-
ment tasks.

As an example, an RF downcon-
verter LXI module could be used
for spectral measurements in one
test sequence and then be reconfig-
ured for network measurements in
another. To create the stimulus signal
for network analysis, simply adding
a different LXI upconverter makes it
easy to change the output frequency
range without having to purchase
an entirely new signal generator.
Reducing the redundancy—and
increasing the utilization—of these
fundamental hardware elements
helps trim the size and cost of test
systems (Figure 16.6).

Synthetic instruments
In addition to the attributes
mentioned earlier, SIs create two
additional possibilities. SI hardware
and software modules can be used
to emulate obsolete instruments,
removing the burden (and cost) of
supporting outdated equipment in
long-lived systems. SIs also make it
possible to create and perform totally
unique measurements that are not
currently possible with traditional
instruments.

Peer-to-peer triggering
By making it possible for one instru-
ment or device to send triggers and
information to another, LXI frees up
the PC to perform other, higher-level
tasks. Peer-to-peer triggering also
eliminates the need for an expensive
real-time controller to issue precise
triggers to the instruments in a
system. Ultimately, overall test time
can be reduced because techniques
such as wait states and status
queries will be used less often in
system software.

Time-based triggering
With IEEE 1588, time-based
triggering may prove to be a
revolutionary way to synchronize
measurements within systems and
between instruments. For example,
this method eliminates the need for
trigger-specific external cabling so is
not limited by the distance between
instruments. All measured data can
be time stamped, making post-test
analysis easier, more efficient and
more meaningful. System throughput
also increases because each instru-
ment can start at a specific time
rather than waiting for a trigger or
command.

Figure 16.6. LXI devices reduce the size and footprint of test systems

155
www.agilent.com/find/open

Appendix 16A: Defining
synthetic instruments
In the mid 1990s, the U.S. Department
of Defense (DoD) assigned the U.S.
Navy the task of developing new types
of automated test systems (ATS) for
the testing of avionics and weapons
systems in the factory, on the front
lines and anywhere in between. The
project has six driving goals:

•	Reduce the total cost of ownership
of ATS

•	Reduce the time to develop and
deploy new or upgraded ATS

•	Reduce the physical footprint of
each system

•	Reduce the logistics footprint via
decreased spares, support systems
and training

•	Provide greater flexibility through
systems that are interoperable
among U.S. and allied services

•	Improve the overall quality of testing

These are ambitious goals but
equipment manufacturers, defense
contractors and the DoD believe
they can be achieved over time by
applying advances in commercial
technologies. The greatest progress
toward these goals may come from
the use of synthetic instruments
(SI). According to the Synthetic
Instruments Working Group�, a

�	 Includes joint participation of the
DoD, prime contractors and suppliers.

synthetic instrument is a reconfigu-
rable system that links a series of
elemental hardware and software
components via standardized
interfaces to generate signals or
make measurements using numeric
processing techniques. The key word
is reconfigurable: the elemental
blocks can be arranged and rear-
ranged via software commands to
emulate one or more traditional
pieces of test equipment.

To make it work, an SI contains as
many as four major components:
signal conditioners, frequency
converters, data converters and
numeric processors. The basic
block diagram shown in Figure 16.7
describes most microwave instru-
ments, including spectrum analyzers,
frequency counters, network
analyzers and signal generators.

Unlike general purpose instruments,
which are optimized to perform one
task (e.g., spectrum analysis or signal
generation), the synthetic instru-
ment architecture is optimized to
provide greater efficiency in ATS by
reducing redundant elements such
as the digitizers and downconverters
found in multiple instruments within
a system. The DoD expects these SI
modules to come from a variety of
vendors, enabling easy mixing and
matching as requirements change
or modules become obsolete. What’s
more, any substitution of modules
should require only minimal changes
to the core system software.

Although this approach can be
applied to any type of instrument, it
is especially well suited to RF instru-
ments. As an example, an RF vector
signal analyzer can be broken down
into a downconverter, a digitizer and
the associated analysis software.
Similarly, an RF signal generator can
be reduced down to its elementary
building blocks. By creating these
building blocks as distinct hardware
modules and using software to control
their arrangement and configuration,
it becomes possible to create the func-
tional equivalent of multiple instru-
ments with a handful of modules.

This approach can also reduce the
cost of system updates. Because
different types of building blocks are
based on different technologies, they
have different innovation cycles. For
example, downconverters contain
relatively stable technology but, in
contrast, rapid advances in inte-
grated circuit technology accelerate
improvements in digitizer speed and
resolution. With SIs, it should be
less costly to keep up with the latest
advances.

Not surprisingly, LXI is becoming the
preferred technology for synthetic
instruments. At the building-block
level, communication between these
components becomes a critical factor.
Rather than relying on custom,
instrument-internal communication
schemes, Ethernet offers the simulta-
neous benefits of excellent data rates
and the flexibility of peer-to-peer
and concurrent communication via
TCP/IP.

Figure 16.7. Basic architecture of an RF/microwave synthetic instrument

Frequency
converter

Signal
conditioner

RF/
microwave

signal

Signal input

Signal output Signal
conditioner

Signal
conditioner

Analog
signal

Control To/from
embedded CPU

Signal
conditioner

Data
converter

Numeric
processor

Signal
conditioner

Digital
data

Signal
conditioner

156 16. Value, Performance and Flexibility: The Promise of LXI

Appendix 16B: Creating
cost-effective measurement
solutions with Agilent
Open to test your way
LXI solves the key problems faced
by system developers: it cuts costs,
reduces system size, simplifies
integration, accelerates throughput
and provides more opportunities for
reuse of both hardware and software.
These benefits make LXI a test archi-
tecture for today and into the future.

To help you fully realize these
benefits, we’ve adopted LXI as part
of the Agilent Open concept (Figure
16.8). Your test system architecture
should give you choices. Its range
of possibilities should fit your
requirements, your preferences and
your existing test assets—hardware,
software and I/O. This is the power
of Agilent Open, a combination of
proven standards and time-saving
tools for test automation. By giving
you greater flexibility, Agilent Open
accelerates the creation of cost-
effective measurement solutions—
and enables testing, your way.

Create versatile solutions with
system-ready instrumentation
Agilent Open instruments are
designed for faster throughput and
easier integration—in test software
and system racks. Choose classic
benchtop instruments for R&D then
use their modular, system-optimized
equivalents in manufacturing—and
run the same software with few or no
changes. To reduce software develop-
ment time, many instruments let you
install measurement personalities
that address specific applications,
including Mobile WiMAX, jitter,
phase noise and more.

Simplify system communication
and connectivity
Choose the best connection for your
requirements through instruments
equipped with GPIB, LAN and USB
ports. You can connect those instru-
ments quickly and easily with the
Agilent IO Libraries Suite software,
which supports the major test-system
interfaces—GPIB, LAN, USB, VXI and
RS-232C. With support for LXI, you
can control instruments and monitor
measurements remotely via the
Web servers built into Agilent Open
instruments.

Achieve efficient development
with open software tools
Configure a typical system in less
than 15 minutes with the Agilent
IO Libraries Suite, which supports
literally thousands of instruments
from hundreds of vendors. Get your
systems up and running sooner with
industry-standard IVI drivers that
put instrument functionality at your
fingertips—and work in the application
development environment you prefer.

Develop hybrid systems that
combine new and existing
assets
Protect your existing assets by easily
integrating GPIB instruments into
LAN- and USB-based systems with
Agilent interface gateways and
converters. You can even add VXI
and PXI equipment to LAN-based
systems via LAN slot-0 cards. Utilize
the multiple I/O ports of Agilent Open
instruments to connect via GPIB now
and LAN or USB in the future. Using
VISA, making the transition from
GPIB to LAN or USB requires nothing
more than simple address changes in
your system software.

Agilent is leading the way in migrating
test systems to the advanced capa-
bilities of LAN. We’re continually
introducing new additions to what is
currently the industry’s largest port-
folio of LAN-enabled instruments. At
the same time, we’re also protecting
your investment in GPIB instruments
by offering devices such as the Agilent
E5810A LAN/GPIB gateway and the
82357A USB/GPIB interface.

To discover more ways to accelerate
system development, simplify system
integration and apply the advantages
of open connectivity, please visit the
Agilent Open Web site at www.agilent.
com/find/open. Once you’re there, you
can also sign up for early delivery of
future application notes in this series.

Figure 16.8. Through Agilent Open and LXI, LAN
becomes the backbone of test systems that easily
incorporate present and future test assets.

157

Introduction
More than 30 years after its creation,
GPIB remains popular due to its
ease-of-use and robustness. However,
LXI (see Chapter 16) meets or beats
GPIB on both counts—and offers an
array of other compelling benefits.
From browser-based configuration
and troubleshooting to Ethernet’s
own 30-year history, LXI enables fast,
efficient and cost-effective creation
and reconfiguration of test systems.
By specifying the interaction of
proven, widely used standards, LXI
helps you conquer the challenges of
product testing without overloading
your budget or your team.

This chapter compares GPIB and LXI,
sketches hybrid system architectures,
outlines a step-by-step approach to
system set-up, and describes how
to easily modify existing system
software to work with LXI devices.

Comparing system
architectures
Every test system depends on four
basic elements: measurement hard-
ware, system software, PC-to-instru-
ment connectivity and cabling to
the device under test (DUT). As you
consider the transition from GPIB
to LXI, it’s worthwhile to consider
the effects on all four aspects as
your preferred system structure
evolves from pure GPIB to GPIB/LAN
hybrids to all LAN/LXI.

17. Transitioning from GPIB to LXI

A typical GPIB system
After more than three decades of
widespread use, the basic structure
of a GPIB-based system is almost
second nature to engineers every-
where: it includes a controller (typi-
cally a PC) configured with a GPIB
card and up to 14 rack-and-stack
instruments daisy-chained together
with GPIB cables. The controller
and instruments are usually located
within a few meters of each other
due to the length constraints on GPIB
communication (although longer
distances are possible with GPIB bus
extenders)

Advantages. From a hardware
perspective, GPIB instruments are
readily available from either your
internal equipment pool or Agilent
and numerous other vendors. These
highly specialized devices tend to be
long-lived because they are generally
immune to changes in the system
controller. They also include proven
measurement routines that provide
accurate, reliable and repeatable
results. What’s more, many of the
latest instruments offer enhanced
flexibility through downloadable
personalities, which provide special-
ized measurements for applications
such as wireless communications.

Connectivity is simple and well-
understood with GPIB—and a 30-year
history stands as testament to
its proven dependability. Routine
programming is also relatively
simple, whether you choose to
use Standard Commands for
Programmable Instruments (SCPI),
Interchangeable Virtual Instruments
(IVI) drivers or some other type
of drivers for communication and
control.

Disadvantages. The biggest disad-
vantage may be the need to add a
GPIB card to the host PC, increasing
both the cost and complexity of
the system. This can be espe-
cially problematic with notebook
computers that need an adapter for
the PC Card slot or an available I/O
port (e.g., a USB-to-GPIB adapter).
Troubleshooting the GPIB card and
the associated I/O libraries may
take a considerable amount of time.
Once everything is up and running,
communication may be slower than
is possible with LAN and other
alternatives.

Depending on your test require-
ments, GPIB instruments may
consume a lot of rack space and add
redundant or unnecessary capabili-
ties (e.g., multiple display screens).
In some cases, 14 instruments may
not be enough to fully test your
product. With large multi-instrument
systems, bulky GPIB cables and their
large connectors can be difficult to
route and dress within the confines
of a system rack.

System programming has its own
challenges, starting with the basic
task of tracking down useful, reliable
drivers for every instrument in the
system. GPIB systems generally
require additional trigger lines that
you must connect between instru-
ments and then activate via software
commands. Timing and synchro-
nization within a system can also
complicate programming because
GPIB doesn’t provide a common
clock or trigger line.

158 17. Transitioning from GPIB to LXI

Typical LAN-based systems
Making the transition to LXI doesn’t
require sweeping changes to your
system architecture. Instead, a
variety of evolutionary system
structures are possible when using
LAN communication along with
LAN-enabled and LXI-compliant
instruments.

In all cases, the starting point is
a PC with a built-in LAN port:
unlike GPIB-based systems, the PC
needs no physical modifications.
However, the system structure does
require the addition of a switch
or gateway (external to the PC) to
enable communication with multiple
instruments.

Scenario 1—GPIB-to-LAN. The easiest
initial transition is to use LAN to
communicate with an existing GPIB
system. A device such as the Agilent
E5810A LAN/GPIB gateway (see
Figure 17.1) enables remote access
to GPIB instruments via LAN—and
eliminates the need to install a GPIB
card in the PC. Addressing remains
the same: your system software will
see the gateway device as a GPIB
interface even though it communi-
cates via LAN. Because your instru-
ments still look like GPIB devices,

you can transition your system
without changing its software. The
E5810A gateway can be mounted
in the system rack, which, with a
LAN connection, is freed from the
distance constraints of GPIB.

Scenario 2—GPIB plus LAN. A typical
next step in the transition to LXI is
the addition of a LAN router between
the PC and the LAN/GPIB gateway
(see Figure 17.2). This makes it
possible to incorporate GPIB, LAN
and LXI equipment into a single
system by connecting GPIB instru-
ments to a LAN/GPIB gateway and
then connecting the gateway and
any LAN or LXI instruments to the
router.

.One important point is worth
remembering: although many test
instruments are equipped with LAN
ports, not all can be controlled via
LAN. Some use the LAN port only to
communicate with external peripher-
als—so it’s best to check the product
manual or built-in help function to
verify LAN-specific capabilities. Of
course, if an instrument carries the
LXI logo, it is has passed compliance
testing and, at a minimum, can be
controlled via LAN, has a browser-
accessible Web interface, is provided

with an IVI driver and meets LXI’s
physical specifications.

Scenario 3—All LAN. LXI-based prod-
ucts are becoming widely available
so it is now possible to evolve to an
all-LAN structure. These systems will
include one or more LAN routers as
needed to accommodate all of the
LXI instruments (see Figure 17.3).
Every instrument will be able to
take advantage of LAN’s speed while
utilizing low-cost I/O cabling. The
browser-based interface within every
LXI instrument will help speed and
simplify instrument—and system—
configuration and troubleshooting.
The long reach of LAN and the
synchronization made possible by the
IEEE 1588 precision time protocol
(PTP) will enable a variety of new
capabilities and applications. (Please
refer to Chapter 10, Using LAN in
Test Systems: Network Configuration
and Basic Security, for advice on
setting up a private, protected
measurement network using either a
router-based or PC-based approach.)

Please refer to Chapter 16, Value,
Performance and Flexibility: the
Promise of LXI, for a closer look
at the fundamental concepts and
advantages of LXI.

Figure 17.1. A LAN/GPIB gateway can connect
GPIB instruments to a PC’s LAN port

LAN/GPIB
gateway

LAN

GPIB

GPIB instruments

Figure 17.2. A router plus a LAN/GPIB gateway
enables connections of GPIB, LAN and LXI
instruments to a PC’s LAN port

LAN/GPIB
gateway

LAN

LAN
Router

GPIB

GPIB instruments
LAN and LXI
instruments

Figure 17.3. Using multiple routers enables
connection of local and remote LXI instruments
to a PC’s LAN port.

LAN

Router

Router

Local LXI
instruments

Remote LXI
instruments

159
www.agilent.com/find/open

Setting up an LXI system
A demonstration is the best way to
see how quickly and easily you can
configure a LAN-based system. To
provide a virtual demo, the following
step-by-step procedure outlines the
suggested actions and tools that will
simplify system configuration during
initial setup and future changes.

Step 1: Connect LAN cables
The first step is to connect all of the
instruments to the necessary LAN
hardware (router, etc.) using stan-
dard LAN cables. Next, connect the
router to the system’s host PC.

Step 2: Insert CD into PC
Install the Agilent IO Libraries Suite
onto the host PC. Provided free with
Agilent instruments, the IO Libraries
Suite works automatically with both
Agilent and NI interfaces (it is fully
compatible with NI-488).

It typically takes less than 15 minutes
to load the IO Libraries Suite and run
the configuration tools. To simplify
configuration, the software recog-
nizes other installed libraries such
as NI VISA and configures itself in a
compatible manner.

Step 3: Identify PC interfaces
The Connection Expert, one of the
key tools in the IO Libraries Suite
(see Figure 17.4), identifies and
configures the various interfaces
within the PC—LAN, USB, GPIB and
serial (COM). It starts by automati-
cally recognizing the manufacturer,
model number and serial number of
installed or attached interface cards
and converters. Connection Expert
completes this step by configuring
the appropriate I/O libraries for each
interface and converter.

Step 4: Identify connected
instruments
Connection Expert can find and
identify instruments from dozens
of vendors then help you configure
them appropriately. One click on
any instrument reveals information
such as manufacturer, model number,
serial number and IP address (or
URL). The IO libraries communicates
with the instrument to find this
information.

Step 5: Test communication
links
If you’d like, Connection Expert can
automatically test the communica-
tion link—LAN, USB or GPIB—with
every connected instrument identi-
fied in Step 4.

Step 6: Configure LXI
instruments
Start any Web browser, type in
an LXI instrument’s IP address
or URL, and view the built-in
instrument page. As defined by
the LXI Standard, an instrument
page includes information such as
manufacturer, model number, serial
number, firmware revision code
and instrument IP address. LXI
instruments also provide a configura-
tion page that lets you adjust LAN
settings through the Web interface.
Agilent instrument pages generally
include a product photo and links to
additional information. “Intelligent”
instruments can also use this page
to download firmware revisions or
measurement personalities.

Figure 17.4. The Agilent Connection Expert simplifies the configuration of PC-to-instrument I/O.

160 17. Transitioning from GPIB to LXI

Many Agilent instruments provide
additional built-in pages that let
you interact with the instrument
and perform various tasks: make
measurements, generate signals,
close channels, read values and
display results (see Figure 17.5).
Some will also let you try program
commands or command sequences
and verify the instrument’s response.

Agilent IO Libraries Suite, Agilent
Connection Expert and the LXI
browser interface are a powerful
combination that can reduce set
up time from days to minutes. Best
of all, the IO Libraries Suite and
Connection Expert are designed to
work with instruments from virtu-
ally every manufacturer. Agilent
customers can download the IO
Libraries Suite at no charge from
www.agilent.com/find/open.

Figure 17.5. Many of Agilent’s LXI instruments include built-in web pages that let you configure the
device and make measurements. For example, this page on the 34980A multifunction switch/mea-
sure unit makes it easy to configure each module in the system..

Simplifying software
changes
Making the transition to LXI doesn’t
require sweeping changes to your
system architecture or your system
software. Four important items can
simplify the process of modifying
your system software to communi-
cate with LXI-compliant devices.

Dual-interface instruments
Many of Agilent’s GPIB instruments
that are updated to LXI compliance
will have both LAN and GPIB ports.
These instruments can be used via
the GPIB port without modifying
your existing software or through
the LAN port with a simple address
change in your program. For smaller
programs, you can change addresses
from GPIB to IP either manually or

via search and replace. For larger
programs or test suites, you can
modify the device declarations within
the program. You can also use Agilent
IO Libraries Suite, which allows a
table of aliases. This approach may
cause slightly slower communication
but provides a convenient way to get
your system up and running.

VXI-11
From the perspective of a PC applica-
tion, many instruments implement
the VXI-11 communication protocol
that makes LAN I/O look just like a
GPIB connection. In practice, this
means software written for GPIB is
likely to work with identical LAN-
enabled instruments that implement
VXI-11.

Command-compatible
instruments
Instruments that are command-
compatible with older instruments
can be used with your existing
software. As an example, the Agilent
34410A and 34411A digital multime-
ters have a compatibility mode that
mimics the widely used 34401A or
E1412A DMMs. The LXI-compliant
34410A and 34411A, equipped with
both GPIB and LAN interfaces, can
replace a 34401A in a system with
either no changes (GPIB) or minor
changes (IP addressing for LAN) to
the system software.

161
www.agilent.com/find/open

Drivers
Many manufacturers are modifying
existing instruments to achieve Class
C LXI compliance. In most of these
cases, the existing driver should
work correctly even if you switch to
the LXI version of the same model.
The IVI drivers required by the LXI
standard support another possible
solution: “class drivers,” which
enable instrument substitution.
Instruments within a specific class,
such as the DMM class, for example,
can be substituted for each other
within a test system. The one caveat
is the possibility of different results
if, for example, you substitute a
class-compatible 4½-digit DMM for a
6½-digit model.

Conclusion
GPIB has served the test and
measurement community well for
decades and will continue to be an
important asset for years to come.
However, LXI provides not only the
ease-of-use and robustness of GPIB
but also includes capabilities such
as browser-based configuration and
troubleshooting that enable fast,
efficient and cost-effective creation
and reconfiguration of test systems.

With a series of incremental changes
to your system architecture and
software, you can make the shift to
the speed, distance and performance
advantages of LAN and LXI.

162 17. Transitioning from GPIB to LXI

163

18. Creating Hybrid Test Systems with PXI, VXI and LXI

Introduction
It’s common to associate certain
types of instrumentation with the
stages of your product’s lifecycle.
For example, benchtop instruments
are often used in R&D because they
enable interactive control of specific
measurements and provide rapid
feedback. As your product moves to
manufacturing, modular solutions
such as PXI or VXI are sometimes
used because they can reduce the
size of automated test systems.

Unfortunately, in the transition from
benchtop to modular instruments,
the lack of leverage—in hardware,
software and test strategy—can be
costly and time consuming. LXI
offers the potential to change this
situation by offering related or
identical products in multiple form
factors (including benchtop, modular,
and synthetic instruments) and
making it easier to leverage your
existing test strategy and system soft-
ware across your product’s lifecycle.

This chapter compares PXI and VXI
with LXI, sketches hybrid system
architectures that incorporate your
existing test assets and describes
what will be possible in the future
as you migrate to fully LXI-based
systems.

Assessing modular
systems
Both PXI and VXI require several
discrete elements—a mainframe, plug-
in cards, I/O, PC and software—to
create the functionality of one
standalone instrument or perhaps
a complete rack-and-stack system
(Figure 18.1). Achieving equivalent
measurement and analysis capabili-
ties requires that large amounts of
data be moved within the mainframe
(or chassis), various plug-in cards
and the host PC. Some amount of
programming, by the end user or
a system integrator, is typically
required to achieve the needed level
of functionality. The resulting soft-
ware application provides the user
interface as well as most (if not all)
of the measurement capabilities, data
displays and data analysis routines.

Making all of that work with accept-
able performance often requires
a powerful PC that can process
and analyze measured data while
also controlling the hardware and
providing the user interface. When
an external PC is used as the system
host, it will require the installation
and configuration of an interface
card. When an embedded controller
is used, this may require a larger
mainframe that can accommodate
the controller and the various plug-in
cards. While this approach elimi-
nates the interface to an external
PC, it still requires that a monitor,
keyboard and mouse be connected to
the embedded PC.

Although this somewhat complicated
approach has become popular in
certain applications, it is not a
universally useful solution, and it has
advantages and disadvantages that
are worth a closer look.

Figure 18.1. A typical VXI system

164 18. Creating Hybrid Test Systems with PXI, VXI and LXI

Advantages of PXI and VXI
Both PXI and VXI have useful
advantages in hardware, connectivity
and programming when compared to
rack-and-stack systems.

Hardware. One key advantage is the
density of switching, sourcing and
measuring capabilities that can be
packed into a single mainframe. PXI
and VXI will usually be smaller than
a rack-and-stack system with similar
functionality. PXI and VXI also have
an edge over rack-and-stack in trig-
gering and synchronization, thanks
to their high-speed backplanes and
included triggering capabilities.

Connectivity. PXI and VXI offer a
variety of I/O alternatives: MXI,
GPIB, LAN, USB, FireWire and serial.
This allows you to make case-by-case
tradeoffs between performance and
convenience.

Programming. System creators can
use graphical or text-based develop-
ment environments to create the
required measurement and analysis
functionality. While it can be difficult
to work with register-based PXI
and VXI plug-in cards, the use of
device drivers can greatly simplify
communication and programming
(see “Programming register-based
devices”). The resulting measurement
solution may be smaller and faster
than an equivalent rack-and-stack
system built with benchtop GPIB
instruments.

Disadvantages of PXI and VXI
Both PXI and VXI have shortcom-
ings that can affect your ability to
create a system that fully satisfies
the budgetary, technical and lifecycle
requirements of a test specification.

System host. Unlike a typical rack-and-
stack system, a PXI- or VXI-based
system can be heavily dependent on
the performance of the host PC—and
higher performance commands a
higher price. What’s more, the PC-
dependent approach does not scale
well for large, complicated systems:
as more modules move more data
more often, the PC can become a
processing bottleneck that slows
overall system performance.

Embedded controllers come with
their own set of shortcomings.
Because these are a specialty item
produced in limited quantities, they
typically cost three to eight times
as much as an equivalent desktop
PC. They also tend to lag behind the
latest advances in performance and
capabilities.

Hardware. In addition to the high
entry cost of PXI and VXI, you may
need to buy a mainframe that has
more slots than needed if you want
to allow for future expansion. Once
a mainframe is filled, there is also
the potential cost of adding another
mainframe if the system needs just
one more plug-in card.

When the required functionality
isn’t available in a modular format it
will be necessary to add bench-type
instruments to the system. Examples
include many RF measurements as
well as high-wattage power supplies.
The inclusion of standalone instru-
ments can increase the complexity
of both system integration and
programming. It may also negate the
size advantages of VXI or PXI.

Programming register-
based devices
Because PXI and VXI are leveraged
from computer buses (PCI and VME),
their plug-in cards usually depend on
register-based operations to read or
set attributes, initiate measurements,
load or unload data, and so on. While
this type of low-level programming
enables detailed computer control
of each module, it can be quite
complicated and time consuming.

One popular solution is device
drivers, which handle the low-level
details and enable programming
at a higher level. The best choice
of driver depends on the type of
hardware or software being used.
For example, National Instruments
uses IVI-G drivers with LabVIEW and
IVI-C drivers with LabWindows. While
IVI-C and IVI-G drivers are available
for many Agilent instruments, Agilent
and others have provided IVI-COM
drivers. These are language- and
platform-neutral and one version will
work in all Microsoft® COM (and
compatible) environments, and with
Microsoft Excel. Not only does this
provide additional flexibility because
you can work in your preferred
development environment, but it
also can enhance your productivity
through features such as IntelliSense
pop-up menus that provide onscreen
command-completion help.

165
www.agilent.com/find/open

Connectivity. Using either MXI or GPIB
as the interface adds hardware cost
and configuration complexity to an
external host PC.

Programming. Because most PXI and
VXI devices lack any sort of built-
in user interface—front panel or
browser-based—you typically have to
purchase, install and configure some
type of software to control even the
simplest device. Additional program-
ming may be required to perform a
measurement, manipulate the data
and analyze the results. What’s more,
T&M-specific software that provides
these capabilities tends to be much
more expensive than commercial
programming environments available
from Microsoft and other vendors.

Cost. Both PXI and VXI incur a
large overhead cost in the main-
frame, controller, connectors and
I/O subsystem. PXI and VXI both
require a considerable investment
before the first module can be used.
Additionally, the per-slot overhead
costs can be prohibitive when the
PXI or VXI mainframe contains
low-cost modules such as digital IO,
DACs, or simple switching.

Exploring LAN-based
hybrid systems
As earlier chapters have noted,
LAN is rapidly gaining favor as the
interface of choice for automated
test systems. While the earliest
LAN-enabled instruments offered
inconsistent implementations of
the interface, the LXI standard now
ensures a consistent approach that
makes it possible to use compliant
instruments from multiple vendors.
Chapter 16 offers a closer look at
LXI.

In most cases, it is relatively straight-
forward to create hybrid systems
that utilize LXI devices alongside
GPIB, PXI and VXI hardware. A
hybrid structure lets you harness
the advantages of each architecture
within a single system. In addition
to saving money by protecting your
existing investments in test assets,
this approach also helps you save
time because you can continue using
familiar hardware, interfaces and
software.

A typical LXI-based system starts
with a host PC and its built-in LAN
port, which provides a connection to
local and remote LXI-based devices
through commercially available
LAN switches or routers. This is
also the starting point for hybrid
configurations that include LXI
devices working alongside a VXI or
PXI mainframe. Today, four possible
scenarios are likely and feasible.

Scenario 1: VXI and GPIB
If a VXI mainframe contains a GPIB
slot-0 card, it can be connected to the
PC via LAN by adding an interface
converter such as the Agilent
E5810A LAN/GPIB gateway (Figure
18.2). With the gateway connected
between the VXI mainframe (GPIB)
and the router (LAN), any applica-
tion running on the PC will be able
communicate transparently with the
VXI hardware as GPIB devices.

•	Advantages. This hybrid structure
eliminates the need to install a
GPIB card in the PC. With the
gateway, addressing can be kept
the same so no software changes
will be required.

•	Disadvantages. System performance
may decrease if the gateway cannot
keep pace with the demands of
any high performance measure-
ment cards installed in the VXI
mainframe.

Figure 18.2. With a router and a LAN/GPIB
gateway, test software on the PC can commu-
nicate transparently with VXI instruments, as if
they were GPIB devices.

LAN/GPIB
gateway

LAN

LAN
Router

GPIB

VXI mainframe
with GPIB slot 0

LAN and LXI
instruments

166 18. Creating Hybrid Test Systems with PXI, VXI and LXI

Scenario 2: VXI and LAN
When a VXI mainframe is equipped
with a LAN slot-0 card, adding it
to the system network is as simple
as connecting it to the LAN router
(Figure 18.3). Even if the LAN-
equipped VXI system is not LXI
compliant, it can coexist on the
network with any LXI devices.

•	Advantages. Every instrument in
the system—LXI or VXI—can utilize
LAN’s I/O speed. If the system
software is already programmed
to communicate with the VXI
hardware via LAN, addressing
should remain the same so few
or no software changes will be
required. Any required program-
ming changes should be relatively
modest, even when you replace an
MXI or FireWire slot-0 card with a
LAN slot-0 card.�

•	Disadvantages. Depending on the
devices installed, this configuration
may provide less performance than
a purely backplane-based system
(e.g., one that uses an MXI inter-
face) but should be faster than the
LAN/GPIB configuration described
in Scenario 1.

�	 One example is the VXI Technology
EX2500 LXI-VXI Gigabit Ethernet
Slot-0 Interface.

Scenario 3: Embedded
controller
If a PXI- or VXI-based system is
using an embedded controller within
the mainframe, the controller can
be connected to the test-system
network through its built-in LAN
port. The PXI or VXI portion of the
system would still be controlled by
the existing software running on
the embedded PC. To simplify the
overall system structure, the existing
software could be modified to control
the LXI devices, eliminating the need
for an external PC that controls only
LXI devices (Figure 18.4).

•	Advantages. This is a straightfor-
ward way to add the advantages of
LXI to a PXI- or VXI-based system.
If suitable modular LXI devices are
available to provide functionality
that isn’t available in PXI or VXI
formats, the resulting system
may also be simpler and more
compact than one that uses GPIB
instruments.

•	Disadvantages. Modifying the
existing software to control the
LXI devices could hinder system
performance by putting an addi-
tional burden on the embedded PC;
however, this may have a modest
impact given the built-in intel-
ligence of most LXI devices. This
system structure also requires the
addition of a LAN router, which
will cause a slight increase in
system cost and complexity.

Figure 18.3. Adding a LAN slot-0 card to a VXI
mainframe lets you create a LAN-based hybrid
VXI/LXI system..

LAN

LAN
Router

VXI mainframe
with LAN slot 0

LAN and LXI
instruments

Figure 18.4. An embedded PC with a LAN port
can be used as the system controller in a hybrid
VXI/LXI or PXI/LXI system.

LAN

Router

VXI or PXI
mainframe with
embedded PC

LAN and LXI
instruments

167
www.agilent.com/find/open

Scenario 4: LXI-compliant
mainframe
Some manufacturers of PXI-based
instrumentation are actively
supporting the LXI standard. To ease
the transition from PXI to LXI, at
least one vendor has created Class
C LXI-compliant mainframes that
support a wide variety of switching
modules.� With this approach, you
simply install the switching cards
in an LXI-compliant mainframe
equipped with a PXI slot-1 interface,
which is connected (through its LAN
port) to the system router (Figure
18.5).

•	Advantages. This solution provides
the advantages of existing PXI
switching cards, including high
density and a variety of capabili-
ties, within an LXI-based system.
For new systems, this approach
is also likely to be less expensive
than an all-PXI solution that uses
either an embedded controller or a
PC-to-PXI interface.

•	Disadvantages. Currently, this
approach is supported only for PXI
switching cards. Future develop-
ments may make it possible to
support the demands of register-
based PXI measurement cards.

All four of these scenarios enable a
cost-effective transition that protects
your current investments in system
hardware and software. However,
these hybrid structures also entail
compromises that may be most easily
remedied in the future with a LAN-
centric, all-LXI system architecture.

�	 The Pickering Interfaces 60-100 and
60-101 are seven-slot chassis that
support a variety of 3U PXI modules.

Going beyond hybrid
to all-LXI
As an alternative to PXI or VXI,
LXI eliminates the overhead and
complexity of system develop-
ment with a backplane. When
using benchtop and modular LXI
instruments to create a system, the
approach is conceptually similar
to using GPIB instruments: each
device contains built-in measurement
functionality (and intelligence) and
provides specified measurement
accuracy. However, LXI adds trig-
gering and synchronization capabili-
ties that go beyond GPIB—and can
rival or exceed PXI or VXI. With
these capabilities built into LXI
instruments, your programming
effort can focus on test management
and the management, analysis and
reporting of results.�

As more LXI-based products
become available, it will be possible
to evolve to an all-LAN structure.
These systems will include one or
more LAN routers as needed to
accommodate local and remote LXI
instruments (Figure 18.6). Every
instrument will be able to take
advantage of LAN’s speed while
utilizing low-cost network cabling.
The browser-based interface within
every LXI instrument will help speed
and simplify instrument or system
configuration and troubleshooting.
The long reach of LAN and the
synchronization made possible by the
IEEE 1588 precision timing protocol
will enable a variety of new capabili-
ties and applications.

�	 The use of LXI-based synthetic instru-
ments is more similar to PXI and VXI
in philosophy and approach. This
topic is covered in detail in Chapter 19.

LAN

Router

Router

Local LXI
instruments

Remote LXI
instruments

Figure 18.5. An LXI-compliant mainframe brings
the benefits of PXI switching to a hybrid PXI/LXI
system.

Figure 18.6. Using multiple routers enables easy
connection of local and remote LXI devices to a
PC’s LAN port.

LAN

LAN
Router

LAN and LXI
instruments

LXI compliant
PXI mainframe

168 18. Creating Hybrid Test Systems with PXI, VXI and LXI

Conclusion
The PXI and VXI architectures offer
a number of advantages over rack-
and-stack approaches, but they also
present some disadvantages than can
limit a test engineer’s ability to meet
technical and economic constraints
in a test system. LAN-based hybrid
systems that incorporate PXI or
VXI instruments can be a cost-effec-
tive way to leverage equipment
and programming efforts across
the product life cycle. This chapter
explored four hybrid options that
deliver the benefits of LAN connec-
tivity while protecting investments
in existing instrumentation. As
LXI solutions are becoming more
pervasive across the T&M spectrum,
the transition to an all-LAN LXI
approach is becoming increasingly
feasible and attractive from both
functional and financial perspectives.

169

19. Assessing Synthetic Instruments

Introduction
For decades, automated test systems
(ATS) built around benchtop instru-
ments have been the dominant
test-system architecture. In the late
1980s, modular VXI-based systems
addressed several shortcomings
of the rack-and-stack approach. In
particular, card-based instruments
mounted in a multi-slot mainframe
reduced the size and weight of
systems. The speed and capabilities
of the VXI backplane also enabled
enhanced triggering and faster
data transfers. However, all such
commercial technologies tend to
have lifecycles that are much shorter
than a typical aerospace or defense
system, possibly affecting long-term
maintenance and support of an ATS.

These issues are the driving force
behind an approach called synthetic
instrumentation (SI). The concept
is simple: SIs let you configure and
reconfigure modular hardware and
software elements to create the
functionality of multiple measure-
ment devices. This building-block
approach makes it possible to update
or upgrade an ATS or a Test Program
Set (TPS) by simply replacing a
single module such as a digitizer or
downconverter. It can also reduce the
burden of software updates over the
lifetime of an ATS.

This chapter will help you assess
the potential value of SI relative to
your present or future requirements.
It presents a brief history of SI,
compares a rack-and-stack system
to an SI-based system, describes the
initial applications of SIs and illus-
trates the emulation of conventional
instruments with SIs.

Reviewing the roots of SI
In the mid 1990s, the U.S.
Department of Defense (DoD)
assigned the U.S. Navy the task of
developing new types of ATS for
the testing of avionics and weapons
systems. This ongoing project has six
driving goals:

•	Reduce the total cost of ownership
of ATS

•	Reduce the time to develop and
deploy new or upgraded ATS

•	Reduce the physical footprint of
each system

•	Reduce the logistics footprint via
decreased spares, support systems
and training

•	Provide greater flexibility through
systems that are interoperable
among U.S. and allied services

•	Improve the overall quality of
testing

These are ambitious goals, but the
DoD, defense contractors and equip-
ment manufacturers believe they can
be achieved over time by applying
advances in commercial technologies
(LXI is one important recent example).

The greatest progress toward these
goals is coming from the use of
SIs. According to the Synthetic
Instruments Working Group (SIWG)�,
a synthetic instrument is a recon-
figurable system that links a series
of elemental hardware and software
components via standardized
interfaces to generate signals or
make measurements using numeric
processing techniques. The key word
is reconfigurable: the elemental
blocks can be arranged and rear-
ranged via software commands—and
the signals rerouted via switching—
to emulate one or more types of
traditional test equipment.

To achieve this flexibility, an SI
will contain as many as four major
components: signal conditioners,
frequency converters, data
converters and numeric processors.
For example, the basic block diagram
shown in Figure 19.1 describes most
microwave instruments, including
spectrum analyzers, frequency coun-
ters, network analyzers and signal
generators.

�	 Includes joint participation of the
DoD, prime contractors and suppliers.

Figure 19.1. Basic architecture of an RF/microwave synthetic instrument

Signal
conditioner

RF/
microwave

signal

Signal
input

Signal
output

Signal
conditioner

Signal
conditioner

Down-
converter

Upconverter

Digitizer

Arbitrary
waveform
generator

Signal
conditioner

Analog
signal

Control

Control To/from
embedded

CPU

Numeric
processor

Numeric
processor

Signal
conditioner

Digital
data

Signal
conditioner

170 19. Assessing Synthetic Instruments

Unlike general purpose instruments,
which are optimized to perform one
task (e.g., spectrum analysis or signal
generation), the synthetic instru-
ment architecture is optimized to
provide greater efficiency in an ATS
by reducing redundant elements such
as the digitizers and downconverters
found in multiple instruments used
within current systems.

The DoD expects these SI modules
to come from a variety of vendors,
enabling easy mixing and matching
as requirements change or modules
become obsolete. What’s more, any
substitution of modules—replacement
or “technology insertion”—should
require only minimal changes to the
core system software.

Putting SIs in perspective
SIs are clearly intended to address
a specific set of needs that are
especially important to the military,
but may also be relevant to some
commercial organizations. For
example, if your company is bidding
on a contract that requires or gives
preference to the NxTest concept,
then SI will be required. Longer
term, commercial organizations that
utilize outsourcing and offshore
manufacturing may benefit from the
use of SIs in test systems they define
or provide.

Assessing the situation
Two factors will affect the rate
of SI adoption in the near term:
hardware availability and software
effort. Gradually, a wider variety of
hardware is becoming available, and
Agilent is in the vanguard of both SI
and LXI. The LXI standard, which
addresses the needs of synthetic
instrumentation, is perhaps the most
promising platform for SI due to
the potential longevity of the LAN
interface (see Chapter 16 for more
on LXI).

Software is another matter. Currently,
substantial effort is required to
create the software modules that
provide essential functionality such
as the measurements and calibration
routines needed to replace a stand-
alone instrument. There is also the
time and effort required to support
software written in-house. If you add
to that the typical effort required to
create the mainline test program or
suite of TPS, then the total up-front
development cost is acceptable only if
SIs are required.

Looking ahead, SI vendors recognize
the need for software tools that will
reduce effort, accelerate development
and ensure accurate, repeatable
results. As these tools become readily
available and reuse of software
modules becomes more commonplace,
the development costs for SI-based
systems should decrease. However,
vendors need to address one key
issue: the interchangeability of soft-
ware components. If vendor substitu-
tion is equally viable with both the
hardware and software elements of
SIs, then the major benefits of the
NxTest vision will be within reach.

Weighing commercial
applications
If you develop systems within a
commercial organization, the busi-
ness model for most automated test
applications probably can’t support
the higher initial costs of developing
SI-based solutions. Of course, this
requires a case-by-case assessment,
and only you can decide if the poten-
tial benefits outweigh the current
tradeoffs. Some early adopters may
find SI to be very useful in a specific
application.

Over the longer term, the promise of
SI is well worth watching for many
commercial firms. As more hardware
and software modules become
available, the economic benefits will
increase for commercial applications.

Comparing present and
future approaches
Whether you view SIs as a near-term
requirement, a long-term curiosity or
something in between, a comparison
with traditional approaches reveals
some interesting highlights. Within
the context of the DoD’s driving
goals, it is easy to illustrate the
advantages of synthetic instruments
over GPIB, VXI or PXI solutions.

Reviewing purpose and usage
The main purpose for a military-
related system is to test devices or
assemblies in locations such as the
flight line, an aircraft hangar or a
repair depot. The same system may
also be used in the original manufac-
turer’s facility.

When the test system is fielded for
military use, the top priority is
to identify and replace defective
electronic systems or assemblies
as quickly as possible to return an
aircraft or vehicle to operational
service. The second priority is
to repair the defective system or
assembly and put it into the inven-
tory of spares.

The usage model for such test
systems involves rapid deployment,
perhaps into areas of conflict. Putting
the systems closer to the aircraft or
vehicles they support translates into
higher levels of operational readi-
ness—and reduced downtime—for
those aircraft or vehicles. In this
scenario, flexibility and easy main-
tenance are more important than
absolute measurement throughput.

171
www.agilent.com/find/open

Looking at current solutions
In this context, systems built around
benchtop GPIB instruments, modular
architectures such as VXI and PXI,
or a combination, have noteworthy
advantages and disadvantages.

GPIB instruments
The foremost advantage of GPIB
devices is the combination of
measurement capabilities, perfor-
mance, accuracy and repeatability
contained in one unit. Essentially
every type of measurement from DC
to low frequency to RF is available in
this format. What’s more, the cumu-
lative expertise of the vendor, the
science behind an accurate measure-
ment, is built into the firmware of
each instrument. For system integra-
tion, GPIB is well established as the
dominant architecture for automated
testing.

On the downside, a system built with
just GPIB instruments can be so large
and heavy that it is difficult to move
frequently or across long distances.
One obvious reason for this is the
number of front-panel displays
and keypads that go unused in a
computer-controlled system (Figure
19.2). Less obvious in a large test
system is the number of redundant
digitizers, frequency converters and
other block-diagram elements within
many of the instruments.

It is also costly to upgrade such a
system. For example, when a faster,
wider-bandwidth digitizer becomes
available, it may take several months
before it is available in a GPIB
instrument—and it may be necessary
to replace the existing instrument to
get the benefits of the new digitizer.
What’s worse, changing an instru-
ment may require software modifica-
tions, which entail additional time
and expense to make the system
software work with the new device.

VXI and PXI
With these modular architectures,
the key advantage is the combination
of measurement performance and
triggering capabilities available in a
compact form factor. Also, there is
only one display, which is connected
to either an external or embedded
controller. The ability to embed the
controller in the VXI or PXI main-
frame also saves space and simplifies
system transport.

Because VXI and PXI are based on
flexible, reconfigurable modules, the
SIWG accepts them as SIs within the
DoD NxTest vision. However, some
functions or measurements (such as
high frequency RF and high-wattage
power supplies) are not available
in VXI or PXI. The cost of a VXI- or
PXI-based solution is also generally
higher than an equivalent rack-and-
stack system.

With regard to system longevity,
both modular architectures fall short
because they are based on computer
backplanes that tend to evolve
rapidly then become obsolete. For
example, VXI is based on the 1980s-
vintage VMEbus, which is gradually
disappearing from the computer
world. Similarly, PXI is based on the
PCI bus, which is being replaced by
PCI Express. As time passes, it will
become more expensive to support
and sustain VXI- and PXI-based
systems.

System software
With any of the three major test-
hardware architectures, an essential
key to success is the ability to reduce
the time, effort and expense of
software development and support.
This depends heavily on development
tools and environments that enable
greater reuse of software in system
creation or modification. Today, text-
based programming with the variants
of C is most commonly used for
high-performance test systems. Other
solutions such as Agilent VEE Pro
and NI LabVIEW provide graphical
tools for system creation.

Whichever tools you prefer, the use
of device drivers can simplify the
programming task. This is especially
true with register-based VXI and
PXI devices: drivers allow program-
ming at a higher level by handling
low-level operations such as reading
and setting card attributes, initiating
measurements, and loading or
unloading data. Although program-
ming at the register level enables
detailed computer control of each
module, it can be quite complicated
and time consuming.

Figure 19.2. Redundant or unneeded
hardware such as instrument displays,
keypads and digitizers add extra volume
and weight to rack-and-stack systems.

172 19. Assessing Synthetic Instruments

Understanding the SI approach
With SI, the fundamental elements
of multiple instruments are real-
ized through functional modules
such as digitizers, upconverters,
downconverters and arbitrary
waveform generators. By arranging
and rearranging the interconnec-
tion of these building blocks and
the associated software modules, it
is possible to emulate the function-
ality of an oscilloscope, a spectrum
analyzer, a power meter and other
instruments in much less physical
space. Operationally, this is a
software-intensive process in which
the system could perform a series of
tests by configuring the hardware,
any needed switching and the associ-
ated software module for one type of
measurement and then reconfiguring
the hardware, switching and soft-
ware modules for the next type of
measurement.

System hardware
As a comparison, a rack-and-stack
system containing a spectrum
analyzer, three microwave sources
and a power meter might occupy
18U of rack space. Using a variety
of half-rack SI modules that don’t
have displays or keypads, the same
functionality occupies 11U of rack
space, as shown in Figure 19.3. This

type of system is smaller, lighter and
easier to transport. It also simpli-
fies support by making it easier to
replace or upgrade individual instru-
ment modules as needed.

A rear-panel view of the SI system
would reveal LAN ports on each
module. By creating LXI-compliant
SIs, Agilent is providing a PC-to-
instrument interface that delivers the
stability, longevity and performance
of LAN. This simplifies PC connec-
tivity and also helps lower the total
cost of ownership for the ATS.

The rear view would also show a
hardware trigger bus cable that
complements a variety of LAN-based
triggering capabilities. In combina-
tion, these triggering capabilities
equal or surpass the capabilities VXI
and PXI.

System software
The points mentioned earlier
regarding software development and
maintenance still apply. Currently,
creating the necessary measurement
and calibration functionality requires
a significant development effort.
However, any software modules
designed for transportability can be
reused with other SI-based systems
and potentially with other hardware
modules.

Deciding if SIs are right for you
In the near term, SIs offer useful
benefits that must be weighed against
the tradeoffs. The main overall
benefit of the modular, building-block
approach is greater flexibility in
less space. This approach will also
make it easier to replace individual
modules or implement technology
insertion when new, updated
capabilities are available. Longer
term, this should also make it easier
to replace any modules that become
obsolete.

Currently, the major tradeoff is the
intensity of the software effort, but
as mentioned earlier, this is likely to
change as hardware vendors begin to
provide the necessary software tools.
Looking at the whole system, another
possible tradeoff is in the ability
of SI-based systems to scale grace-
fully: larger systems will tend to put
greater demands on the host PC. A
higher-performance PC may be able
to handle the demands of a complex
system, but a faster processor (or
multiple processors) and more
memory also means a higher price
for the PC and therefore a higher
total cost for the system. The use of
intelligent, LXI-based instruments,
which can offload many computing
tasks from the PC, is another way to
head off this potential issue.

Figure 19.3. An SI-based system can provide equivalent (or greater) functionality in less rack space.

Upconverters

11U Microwave
sources

Downconverter

IF digitizer
Signal processing for downconverter

Arbitrary waveform generator
Provides modulation for upconverters

Power meter

18U

Spectrum
analyzer

173
www.agilent.com/find/open

Exploring the initial
applications
Today, SIs are a good fit with certain
problems but are not quite ready
for others. For example, SIs are not
optimized for single-purpose applica-
tions (e.g., just spectrum analysis),
one-box testers on the production
line, benchtop applications in R&D,
or short-lived test systems. As more
software tools become available, the
situation will become more favorable
for these scenarios.

In contrast, SIs are well suited to
situations that require multiple
identical ATSs or when a system will
be in service for many years. The
flexibility of SI is also a good match
when you need to test a wide variety
of similar devices with a limited set
of measurement hardware. These are
clearly the major issues facing the
DoD and its prime contractors when
creating, supporting and preserving
a TPS.

As mentioned earlier, SIs must
address four present and future
scenarios: flight-line test, inter-
mediate-level (I-level) test, depot
test and at-manufacturer or OEM
test. These represent a continuum
of testing that includes conscious
tradeoffs between size, cost, speed
and performance.

The vision is to use a common,
scaleable hardware platform comple-
mented by common test software
and database management software
that will be networked across all
levels of service and support, and
across all branches of the military.
In practice, the flow of information
starts in the field when an aircraft or
vehicle detects an anomaly in one of
its electronic systems. From that, the
hardware and the information flows
from one stage to the next:

•	Flight-line test. In this operational,
front-line application, the test
system receives a message from
the aircraft or vehicle and flags it
for attention. When it returns to
base, the critical need is to quickly
identify and swap out the correct
subsystem. The defective unit is
recorded in the central database so
it can be tracked through the rest
of the process.

•	I-level test. The key need is to
identify the defective module
within the subsystem. If it can
be removed, it is recorded in the
central database and then sent to
the next stage.

•	Depot test. At centralized repair
centers, the module is tested with
the intent of identifying defective
components at the card level.
The repaired unit will be placed
into the inventory of spares
where it will eventually return to
service—and enable the increased
availability of aircraft or vehicles.

Typically, OEM testing occurs before
the card, module or subsystem is
delivered to the military and put into
service. If the same test system—both
hardware and software—is used by
both the manufacturer and the mili-
tary, there can be greater confidence
in the results and potentially lower
costs in system development, deploy-
ment and support.

174 19. Assessing Synthetic Instruments

Utilizing current SI devices
In May 2006, Agilent’s initial offering
of six synthetic instruments became
the first Class A LXI products to
achieve certification from the LXI
Consortium. These SIs demonstrate
Agilent’s ability to leverage proven
RF technologies into innovative LXI-
based solutions that serve the needs
of the DoD, its prime contractors and
others who can benefit from the flex-
ibility of modular instrumentation.

Reviewing the original six
N8201A. This high performance
26.5 GHz downconverter provides
IF output frequencies of 7.5, 21.4
and 321.4 MHz, enabling three
different signal bandwidth capabili-
ties. External mixing can be utilized
to downconvert microwave signals
as high as 110 GHz. The N8201A
is leveraged from the Agilent PSA
Series spectrum analyzers.

N8211A. This high performance
20/40 GHz analog upconverter
generates a stimulus signal with
superior AM, FM and pulse modula-
tion capabilities via external or
internal modulation (Figure 19.4).
The N8211A leverages the Agilent
PSG analog signal generator’s high
output power, low phase noise and
excellent level accuracy. This module
is available with a variety of options,
including output power and modula-
tion type.

N8212A. This high performance 20
GHz vector upconverter functions
as a microwave source with greater
than 2 GHz I/Q modulation band-
width. It features AM, FM and pulse
modulation (via external or internal
modulation) and multisource
coherent carrier capability. The
N8212A is based on the Agilent PSG
vector signal generator and includes
options for greater spectral purity
and enhanced phase noise.

N8221A. This 30 MSa/s IF digitizer has
a 7.5 MHz IF input and provides 80
dB dynamic range, 14-bit resolution,
and 8 MHz modulation bandwidth.

This module was also leveraged from
the PSA Series spectrum analyzers.

N8241A. This arbitrary waveform
generator (AWG) features 1.25 GSa/s
output with 15-bit resolution and is
based on the Agilent N6030A AWG.
The N8241A offers dual-channel,
single-ended and differential outputs,
with 500 MHz of instantaneous
analog bandwidth per channel
(Figure 19.5).

N8242A. This AWG features a choice
of either 1.25 GSa/s or 625 MSa/s
with 10-bit resolution. It offers
dual-channel, single-ended and
differential outputs, with 500 MHz
or 250 MHz of instantaneous analog
bandwidth per channel.

Figure 19.5. Agilent N8241A arbitrary waveform
generator

Figure 19.4. Agilent N8211A 20/40 GHz perfor-
mance analog upconverter

175
www.agilent.com/find/open

Others. For signal routing, the L4445A
microwave switch/attenuator
driver module allows control of a
broad range of microwave switches
and attenuators. These LXI-based
modules provide switching band-
width up to 50 GHz. Agilent also
offers the N8262A, a 40 GHz wide-
band peak and average power meter
with 100 MSa/s continuous sampling
rate and 30 MHz video bandwidth.
This LXI device is based on the
Agilent P-Series power meters.

Emulating RF instruments
This versatile set of modules can be
quickly and easily reconfigured to
make a host of measurements that
would ordinarily require a vector
signal analyzer, spectrum analyzer
and oscilloscope. They can also be
used to emulate the capabilities of an
obsolete instrument such as the HP
8902A measuring receiver. Two brief
examples will illustrate some of the
possibilities.

SI stimulus unit
This requires signal generation hard-
ware and software modules to create
the required signals and perform
scalar or vector signal analysis.
Signal generation might utilize the
N8241A AWG module (for maximum
signal bandwidth and accuracy), the
associated signal-creation software,
and the N8211A or N8212A upcon-
verter, depending on requirements
for modulation, output power and
signal purity (Figure 19.6).

SI measurement unit
The input signal would be routed to
the N8201A downconverter, which
would provide a 7.5-MHz signal to
the N8221A digitizer. Through its
LAN connection, the host PC would
acquire one or more data blocks
and apply the appropriate software
modules for vector signal analysis
or spectrum analysis of signals from
devices such as radar systems, cell
phones and wireless networking
equipment (Figure 19.7).

A caveat
You can use SIs to emulate a legacy
instrument up to the point where

Figure 19.6. For signal generation, the SI chain includes numeric processing, data conversion and
frequency conversion.

Arbitrary
waveform
generator

Upconverter

uW signal out

Signal generator
software

Input
signal

Vector signal analyzer
software

High dynamic range
IF digitizerUpconverter Radar signals

7.5 MHz

Figure 19.7. Agilent N8241A arbitrary waveform generator

176 19. Assessing Synthetic Instruments

the SI hardware is too different.
For example, software can emulate
a legacy instrument that has poor
noise floor; however, it can’t emulate
a legacy instrument that has a better
noise floor than the SI hardware.
Also, most GPIB instruments have
a unique set of timing, network and
bus issues that are very difficult to
reproduce. In other words, SIs can
emulate legacy instruments, but no
emulation will be a perfect duplica-
tion of the original.

Conclusion
The basic premise of synthetic
instruments is very appealing: they
let you configure and reconfigure
building-block modules to create the
functionality of multiple measure-
ment devices. With benefits such
as smaller test systems, easier
transport, single-module updates or
upgrades, long-lived I/O and simpler
software updates, LXI-based SIs
readily support the DoD’s vision for
NxTest.

As SI vendors address the need for
software tools that reduce effort,
accelerate development, ensure
accurate, repeatable results and
enable interchangeability of software
components, the development costs
of SI-based systems will fall and
these solutions will become more
viable for commercial applications.
Over the long-term, it will be worth
watching the growth and develop-
ment of SIs—and worth monitoring
their progress toward a new era of
greater flexibility in automated test
systems.

177

Section 4. RF/Microwave Test Systems

Overview
The three chapters in this section
explore some of the unique chal-
lenges of automating RF/microwave
tests, particularly as devices and test
requirements become increasingly
complex.

20.	 Optimizing the Elements of an
RF/Microwave Test System, offers
advice on creating flexible,
long-lived RF/microwave test
systems that will provide accu-
rate, repeatable assessments of
the device under test. The focus
of this article is making it easier
to configure, update and modify
your systems now and in the
future.

21.	 Six Hints for Enhancing Measurement
Integrity in RF/Microwave Test
Systems, offers insights into
successfully balancing the trad-
eoffs between performance, speed
and repeatability.

22.	 Calibrating Signal Paths in RF/
Microwave Test Systems, provides
an overview of three approaches
that can be used to calibrate RF
signal paths and produce accu-
rate, repeatable measurements.

178 Section 4. RF/Microwave Test Systems

179

20. Optimizing the Elements of an RF/Microwave
Test System

Introduction
Whether you need to test the latest
cell phone, a next-generation military
radio or an advanced radar system,
proving the device’s ability to meet
customer requirements depends
on a test system that can provide
accurate, repeatable results. For both
parametric and functional testing,
the ability to achieve accuracy and
repeatability becomes more difficult
as devices become more complex.
Greater complexity often translates
into more tests, which may mean
longer development time and a
more complicated test system. The
challenge grows when you try to
create a system that meets budget
and schedule constraints but is also
flexible enough to meet both current
and future testing needs.

This chapter offers ideas and
suggestions that can help you create
flexible, long-lived RF/microwave test
systems that will provide accurate,
repeatable assessments of the device
under test (DUT). Our focus is on
making it easier for you to configure,
update and modify your systems now
and in the future.

Letting the DUT define
“future”
When discussing the future-proofing
of a test system, it’s important to
clarify what “future” means within
the context of the DUT and its
expected lifetime. For RF/microwave
test systems, there are two large
classes of DUTs that have specific
future requirements.

•	 Long-lived DUTs. Many devices and
systems developed for aerospace
and defense applications require
test systems that are easy to
maintain and update far into the
future. An example of this is the
NxTest program from the U.S.
Department of Defense (DoD).
Its guiding vision combines a
common hardware architecture
with software-driven functionality
to enable rapid deployment across
different programs and facilitate
easy updates in the future.

•	 Short-lived DUTs. Fast-cycle
aerospace/defense programs
and rapidly evolving commercial
wireless products require test
systems that can be developed
rapidly and within budget. For
example, creating a new test
system from scratch for every new
phone model—or new wireless stan-
dard—becomes less desirable as
introduction cycles become shorter
and budgets get tighter. The ability
to leverage existing investments in
test equipment and software will
accelerate system development and
deployment while also reducing
system cost.

The ability to meet the needs of
either long- or short-lived DUTs
improves when the test system
includes long-lived hardware, input/
output (I/O) and software. Careful
selection of these three elements
will enhance a system’s flexibility
and its ability to perform accurate,
repeatable measurements of multiple
DUTs and applications—today and
tomorrow.

180 20. Optimizing the Elements of an RF/Microwave Test System

Reviewing some essential
considerations
When it’s time to define and assemble
an RF/microwave test system, two
major factors will affect your deci-
sions about test equipment: the key
attributes of the DUT and the various
constraints on the test system. A
quick review of important attributes
and constraints will lay a foundation
for the discussions that follow.

Key attributes of the DUT
The attributes of your DUT obviously
affect test-system design, and it’s
helpful to look at them from both
general and specific perspectives.

General attributes
At a high level, it’s helpful to
consider the DUT’s complexity, its
stage in the product lifecycle, and the
nature of the manufacturing process.
For example, multi-function devices
are often the most difficult to test:
cell phones with built-in cameras,
military radios that carry voice
and data, and LAN devices with
both wired and Wi-Fi capabilities
may require a much wider range of
measurements and a more costly and
complex test system.

Whether a product is simple or
complex, the early stages of its
lifecycle generally require thorough
testing of numerous characteris-
tics—parametric and functional—to
ensure expected performance and
operation. As a product matures,
fewer characteristics are tested, and
often in less detail.

Within the manufacturing process,
the product volume and mix also
affect equipment choices. The most
difficult case is high volume and high
mix, which might require several
identical test systems that are able
to measure multiple products or
product variations.

Specific attributes
The electrical attributes of the DUT
often drive the shortlist of viable
instrumentation candidates. Most
DUTs contain a mix of circuitry
that is becoming less analog and
more digital while going higher
in frequency with every genera-
tion. On the analog side, operating
parameters such as frequency range,
bandwidth and resolution—along
with headroom for today’s harmonics
or tomorrow’s enhancements—define
the essential specifications for signal
analyzers, signal generators, oscil-
loscopes and so on. The availability
of test equipment with the necessary
performance or capabilities will have
a strong influence on the design of
your system.

Greater digital content makes it
possible for new devices to support
multiple communication standards.
This might be CDMA, TDMA and GSM
in a cell phone or various protocols
in the military’s Joint Tactical
Radio System. The need to support
all relevant standards will demand
much greater flexibility from the
test system—and perhaps lead to the
use of instrumentation that also has
greater digital content in the form of
advanced digital signal processing
(DSP) capabilities.

The physical configuration of the
DUT will also affect choices about
handling, fixturing, switching, power,
loads and test accessories. As an
example, the number and kind of
ports available for external connec-
tions may change as the device moves
through the manufacturing process.
Once the circuitry is loaded into its
enclosure, any built-in test points
may become inaccessible and the
test interface may have to shift from
hard-wired to antenna-based.

Constraints on the test system
A combination of business and
technical factors will also influence
system decisions. On the business
side, budget and timeline are often
the primary drivers of tradeoffs
when selecting test equipment.
At one extreme, for example, you
might need to get the system up and
running as quickly as possible—and
the ideal solution may be a one-box
tester, which trades rapid develop-
ment time and optimized measure-
ments for decreased flexibility. At
the other extreme, your contract
may require compliance with NxTest,
which specifies the use of modular
synthetic instruments—an approach
that yields tremendous flexibility but
at the expense of development time.

Within those constraints and
tradeoffs, numerous expectations
are placed on the test system.
These include its capabilities and
performance: inputs, outputs
and switching; measurement and
analysis; speed, accuracy and
repeatability; and data handling and
reporting. There are also expecta-
tions about cost effectiveness, which
may suggest the use of hardware
elements that are easy to reconfigure
or replace and software that is easy
to modify or reuse.

Expectations about system longevity
follow from both the length of time
the DUT will be manufactured and its
estimated service life. Those require-
ments define how long the test
system itself must also be supported
and maintained.

181
www.agilent.com/find/open

Translating requirements
into optimized equipment
choices
With the essential attributes,
constraints and expectations in
mind, the next step is translating
those requirements into the best
combination of hardware, I/O and
software for your system. We will
look at all three elements separately
but will emphasize the selection of
system hardware.

Comparing hardware types
across a common example
A conventional test system uses a
variety of instruments that perform
a single function such as spectrum
analysis, signal generation or
network analysis. These instruments
are usually reliable, well understood
and easy to use. However, they lead
to large and often inflexible test
systems that include many redundant
elements (such as displays, keypads
and mixers) and require complicated
switching and fixturing.

In contrast, an ideal test system
might use a few well-defined func-
tional modules or building blocks
(such as frequency converters,
digital-to-analog converters and DSP
engines) that could be arranged and
programmed via software to perform
the required measurements. If this
type of “generic” test system were to
contain flexible switching, powerful
DSP hardware and fast, wideband
analog-to-digital and digital-to-analog
converters, it could analyze and
generate virtually any type of signal.

These two sketches represent the
ends of a continuum—and many
of today’s test instruments are
hybrids that reside somewhere in
between the conventional and ideal
approaches. One popular example
is a category called “vector” instru-
ments. These integrate powerful DSP
technology with conventional analog
components to create versatile,
accurate signal analyzers, network
analyzers and signal generators that
can handle highly complex signals
and devices.

If used exclusively in a system, each
of these hardware architectures—
conventional analog, next-generation
modular and modern vector— would
produce a very different block
diagram. To provide a consistent
comparison, the next three sections
describe how each approach might
be used to create a system that
performs multi-tone testing of a
communication device.

Example 1: Conventional
analog instruments
As shown in Figure 20.1, this is a
complex system that includes three
signal generators, one spectrum
analyzer and a variety of external
accessories—amplifiers, low-pass
filters and a combiner. The system
also includes a PC with software that
controls the signal generators and
the spectrum analyzer.

Advantages
In many cases, most of the equip-
ment may be readily available on an
engineer’s bench, in a central loaner
pool or from an instrument manu-
facturer. It will typically be relatively
low cost and, as a result, quite cost
effective. Because test engineers have
been using this type of equipment for
many years, it will likely be familiar
and well understood, enabling rapid
development.

Disadvantages
The single-purpose nature of conven-
tional analog instruments gives
them limited functionality and little
versatility. This has three noteworthy
drawbacks. First, a complete system
will require numerous instru-
ments and consume a lot of rack
space. Second, the system will be
more complex, requiring myriad
interconnections among the various
instruments and accessories. Third,
this type of system needs frequent
calibration to ensure its accuracy
and repeatability.

Figure 20.1. A complex multi-tone test system implemented with conventional analog instruments

Signal
generator

Spectrum
analyzer

Combiner

Amp

Signal
generator LPFPC

LPF

DUT

Signal
generator LPF

182 20. Optimizing the Elements of an RF/Microwave Test System

Example 2: Next-generation
modular instruments
Compared to the conventional
approach, this type of system
requires a somewhat less complex
arrangement of hardware (Figure
20.2) that includes four building-
block modules: an arbitrary
waveform generator (AWG), an
upconverter, a downconverter and a
high-speed digitizer. The PC provides
system-control functions that
arrange and rearrange the building
blocks as needed to send or measure
a variety of signals. The PC also runs
user-written software that provides
system functionality, ranging from
calibration to measurement algo-
rithms to data analysis.

Advantages
The modular approach provides the
ultimate in flexibility, enabling a
high level of hardware reusability
and making it easy to rearrange the
building blocks to create function-
ality that is equivalent to multiple
instruments. For example, because
the AWG can generate virtually any
type of signal, this configuration
can handle much more than just the
multi-tone test.

Modular hardware also offers
the possibility of obtaining better
performance by simply replacing an
outdated module with a new, higher-
performance building block. What’s
more, this approach can also elimi-
nate redundant hardware elements,
which may reduce a system’s size

and its hardware and support costs.
The DoD and others believe the
building-block approach offers the
greatest potential for enabling longer-
lived test systems.

Disadvantages
Initially, this architecture will require
a significant investment in software
development. The main reason is
the need to understand, define and
create the individual measurement
algorithms and analysis func-
tions that will utilize data from
the hardware modules. (This is in
sharp contrast to a fully integrated
instrument that has a vendor’s
measurement expertise built into
its firmware.)� As a result, software
development costs will tend to be
higher for this type of system.

Another key issue is measurement
accuracy. Because manufacturers
cannot anticipate every possible
combination of modules, developers
will have to create routines that, for
example, calibrate every on-the-fly
rearrangement of the modules.
Consequently, traceability may be an
issue for the earliest systems built on
this foundation.

�	 Over time, Agilent expects to provide
a broad and deep set of software
tools to accompany its building-block
hardware modules. Possible software
tools include individual measurement
routines (e.g., group delay, VSWR),
complete measurement modules (e.g.,
spectrum analysis) and even legacy
instrument emulation modules.

Example 3: Modern vector
instruments
As shown in Figure 20.3, the use of
modern vector instruments produces
the simplest system, requiring just
one vector signal generator and
one vector signal analyzer. The PC
does more than serve as host and
controller: it also adds functionality
via the Agilent Signal Studio soft-
ware, which makes it easy to create
the required multi-tone signal and
download it into the vector signal
generator.

Advantages
The tight integration of analog and
DSP technologies delivers excep-
tional versatility and functionality.
Comparing this system to the conven-
tional approach, one vector signal
generator replaces three analog
signal generators and seven external
accessories. On the measurement
side, some vector signal analyzers
also provide waveform analysis capa-
bilities, possibly replacing a separate
digitizer or oscilloscope. These
flexible instruments can also be
used for a variety of measurements,
not just the multi-tone example. In
a system, fewer instruments mean
fewer connections, less complexity
and fewer opportunities to introduce
measurement errors.

Vector instruments can also provide
better longevity: because they are
firmware-based, it is easy to enhance
their functionality and add new capa-
bilities. Because so much of their

Figure 20.2. The multi-tone test system implemented with LAN-based building-block instruments

Upconverter Downconverter

PC

LAN

DUT

AWG Digitizer

183
www.agilent.com/find/open

functionality is DSP-based, vector
instruments can often provide better
accuracy and performance through
digital corrections to IF stages,
filters and so on. These performance
enhancements are traceable and also
enable longer intervals between full
calibrations.

Disadvantages
Currently, the hybrid approach
commands a higher cost per unit
but, as shown here, a single unit may
replace multiple analog instruments.
Also, if greater analog performance
is needed, the whole unit must be
replaced when that level of perfor-
mance is available in a new vector
instrument.

Comparing the three
approaches
Each of the three approaches has
something to offer. Conventional
analog instruments are very familiar
to many system developers and so
may enable faster system develop-
ment. What’s more, they are often
readily available and may be the first
to offer the required level of perfor-
mance. Next-generation modular
instruments will provide tremendous
flexibility and potentially greater
system longevity than the other two
approaches—but with longer develop-
ment time and higher software costs.
Today, modern vector instruments
provide the strongest combination
of functionality, versatility and

accuracy. The ability to expand their
capabilities via firmware updates
vgives them an advantage when
testing devices that include evolving
communication standards.

Before deciding which approach
is the best fit for your system, it’s
important to also consider the avail-
able choices in connectivity, software
and instrument communication. All
will affect system development time,
performance and longevity.

Assessing the connectivity
choices
As discussed in earlier chapters,
most current-generation PCs
include one high-speed LAN port
and multiple USB ports. In the
T&M world, an increasing number
of measurement instruments—and
most new Agilent instruments—now
include LAN and USB ports along-
side the GPIB connector.

Spurred by the PC industry’s steady
advances in LAN performance (and
commitment to backward compat-
ibility) the trend in test equipment
is toward greater use of the future-
proof LAN interface while continuing
to support GPIB. As an example,
vector and modular instruments
work well with LAN but you can
easily incorporate up to 14 GPIB-only
instruments into a LAN-based system
via the Agilent E5810A LAN/GPIB
gateway.

Reviewing software and
communication alternatives
Your chosen combination of appli-
cation development environment
(ADE) and instrument communi-
cation method creates tradeoffs
between development time, software
reuse and system performance.

ADEs are either textual or graphical.
Textual environments such as
Microsoft Visual Studio® have a
steep learning curve because they
require a detailed knowledge of
commands and syntax. Graphical
environments such as Agilent VEE
Pro and National Instruments
LabVIEW use a schematic approach,
which engineers tend to learn
easily. In the past, programs written
in textual languages had a speed
advantage at runtime but this differ-
ence has been reduced with time.

Instrument communication has
been evolving, with direct I/O and
vendor-specific commands giving
way to industry-standard command
sets and instrument drivers. Direct
I/O has two important advantages:
speed and access to an instrument’s
full feature set. However, because
it is instrument-specific, direct I/O
hinders software reuse. Instrument
drivers are high-level pieces of
software that are also instrument- or
instrument-class-specific but, in
contrast, they simplify program-
ming by letting you substitute one
driver for another if you replace
an instrument in a system. The
tradeoffs are in functionality and
speed: drivers typically access only
the most commonly used commands
and often communicate more slowly
than direct I/O.

Figure 20.3. The multi-tone test system implemented with DSP-based vector instruments

Vector signal
generator

Vector signal
analyzer

PC
with Agilent
Signal Studio

software DUT

184 20. Optimizing the Elements of an RF/Microwave Test System

Pulling it all together
Table 20.1 compares analog, modular
and vector instruments based on five
essential aspects that affect system
performance: measurement capabili-
ties, measurement performance, I/O
connectivity, system software (and
instrument communication) and
potential longevity. Those elements
capture the value of each approach,
and that overall value provides
a broader context for the sixth
element, which is hardware cost.�

Ultimately, the best answer will
depend on the attributes of your DUT
and the constraints on your system.
However, if you are creating a new

�	 In many cases the lack of software
transportability will drive the cost of
developing new software far beyond
the hardware cost.

test system, we suggest you consider
the use of vector instruments, LAN-
based I/O and instrument drivers.
This combination will provide a
highly future-proof system that
should be easy—and cost-effective—to
modify in the near-term, maintain
and update in the future. If you are
required to comply with NxTest, then
substitute modular instruments for
vector instruments in the preceding
recommendation.

Conclusion
Conventional analog instruments,
next-generation modular instruments
and modern vector instruments
each offer compelling benefits for
RF/microwave test systems. Choosing
the approach for your next system
depends on a number of factors: (1)
whether your DUTs tend to be long-

lived or short-lived, (2) the character-
istics of your DUTs—including both
general factors such as stage in the
product lifecycle and manufacturing
volume and specific factors such as
degree of digital content and physical
configuration—and (3) any financial
and technical constraints on your
test system.

In addition, be sure to consider your
options for connectivity, software
development tools and instrument
communication.

For new test systems, our baseline
recommendation is a combination of
vector instruments, LAN-based I/O,
graphical programming and instru-
ment drivers. Modify this approach
as needed, of course, but in general it
will provide a high degree of future-
proofing and the ability to modify,
maintain and update quickly and
cost effectively.

Table 20.1. Comparing key attributes of the three hardware approaches

Conventional analog instruments Next-generation modular
instruments

Modern vector instruments

Measurement
capabilities

Good but limited User creates individual functions,
gets maximum control

Best, very versatile; easy for manufac-
turer to update via firmware changes

Measurement
performance

May offer best raw measurement
performance (e.g., frequency range,
bandwidth)

Able to mix and match modules
to achieve desired combination of
speed, range and bandwidth

May offer best speed, resolution and
accuracy

Connectivity GPIB LAN Most have GPIB, LAN and USB
Software &
communication

Typically used with textual
programming and direct I/O
(and perhaps SCPI)

Graphical or textual programming
with drivers; may require low-level
programming of individual modules

Graphical or textual programming
with drivers (and direct I/O, if
necessary)

Potential longevity Good, but must eventually replace
to achieve latest performance and
capabilities

Excellent potential: Update software
as needed to create new capabili-
ties; replace single module to obtain
latest performance

Very good for commercial programs;
may be too short for aerospace and
defense programs. Can add capabili-
ties via firmware updates; however,
must eventually replace instrument
to obtain latest analog performance.

Hardware cost Moderate for individual instru-
ments but may need more than
one of each type

High (initially) for individual modules
but may provide lower overall cost
due to flexibility and longevity of
test system

Somewhat high for individual instru-
ments but each one may replace
multiple analog instruments (and
provide greater flexibility)

185

21. Six Hints for Enhancing Measurement Integrity in
RF/Microwave Test Systems

Introduction
Even though most RF and micro-
wave test systems measure devices
within a few broad categories such
as amplifiers, transmitters and
receivers, every individual system
faces a unique set of circumstances,
requirements and challenges. As
unique as each situation may be,
three universal factors interact when
you define any RF and microwave
test system: performance, speed and
repeatability. Within the unique situ-
ation each system developer faces,
the ability to make tradeoffs among
these factors is one key to achieving
the required level of measurement
integrity.

Opportunities to manage these trad-
eoffs can occur at many points along
the pathways between the device
under test (DUT) and the measure-
ment instruments (Figure 21.1). This
chapter suggests a framework for
those tradeoffs and offers six sets of
hints that address common prob-
lems that may exist along RF signal
pathways.

Hint 1 provides a foundation for
all six hints. The remaining hints
address the three major tradeoffs:
Hints 2 through 5 can help you
achieve greater performance, Hint
6 suggests several ways to improve
measurement speed, and Hints 3 and
4 can help you enhance measurement
repeatability. In general, these hints
apply to signals in the range of 100
MHz to 26.5 GHz.

System controller

Analog Digital Power

G
B

IP
, L

A
N

 o
r

U
SB Measurement instruments

& power supplies

Switching system

Interface & fixturing

Device under test (DUT)

Figure 21.1. Within any test-system archi-
tecture, there are numerous opportunities to
manage measurement integrity by balancing
the tradeoffs among performance, speed and
repeatability..

Hint 1: Prioritize
performance, speed and
repeatability
All test scenarios require a balance
of performance, speed and repeat-
ability. In most situations, one or
two of these will be the dominant
factor that drives your test require-
ments and your equipment choices.
In all cases, a closer look at the
interactions and tradeoffs among
performance, speed and repeatability
will help you manage your unique
situation.

Building the foundation
To lay the foundation for all six hints,
it’s essential to clarify our definitions
of performance, speed and repeat-
ability in this context.

Performance
In RF and microwave test equipment,
Agilent’s definition of “performance”
focuses on instrument accuracy,
measurement range and bandwidth.
Instrument accuracy includes the
specified absolute accuracy of
amplitude and frequency measure-
ments. Measurement range refers
to dynamic range, distortion, noise
level and phase noise, which are the
attributes that enable precise charac-
terization of signal levels. Bandwidth
refers to the frequency width or
data rate that can be processed and
analyzed.

186 21. Six Hints for Enhancing Measurement Integrity in RF/Microwave Test Systems

Speed
Test system speed or throughput
depends on hardware, input/output
(I/O) and software. Our focus is on
the hardware and the four factors
that influence speed: measurement
set-up time, measurement execution
time, data processing time and data
transfer time. At RF and microwave
frequencies, a key aspect of set-up
time is the settling time of the DUT
or the test system whenever a change
is made (such as switch closures and
power level).

Repeatability
For any test system, the ability to
produce consistent results—test-to-test
and day-to-day—is crucial. However,
repeatability does not infer a high
level of precision, which depends
on the performance of individual
instruments. Instead, repeatability
means a consistent result, whatever
the specified accuracy. For any given
instrument, repeatability may be
different for certain measurements
or modes so it’s important to check
the product specifications or ask
the manufacturer. To some extent,
repeatability can be improved with
more averaging or through modified
algorithms that produce an accurate
approximation of a standardized

measurement. It can be optimized by
minimizing changes to measurement
settings such as center frequency,
span and attenuation level.

Summarizing the interrelationships
The test requirements and business
drivers for a DUT will help you assess
the relative importance of perfor-
mance, speed and repeatability. Once
you’ve identified the dominant factor
and the intensity of its requirements,
sorting through the interactions and
their impact on the system becomes
easier. Tables 21.1 through 21.3
summarize the implications of these
interactions in two cases: when the
intensity of the dominant factor is
either high or low.

Table 21.1. When performance dominates, the most important interaction is between performance and speed.

Performance
Requirements

Implications for speed Implications for repeatability

Low Can go faster: Will spend less time on tasks such as instru-
ment calibration and measurement averaging.

Probably lower: This situation suggests low performance
equipment, which may yield greater uncertainty and,
therefore, less consistency from test to test.

High Must go slower: Will probably need to spend more time on
tasks such as instrument calibration, path correction and
error removal to ensure greater precision.

Probably greater: High performance equipment with lower
noise floor, fewer distortion products, greater isolation, and so
on, will tend to provide less uncertainty and greater measure-
ment consistency.

Table 21.2. When speed dominates, the key relationship is between speed and repeatability.

Speed
Requirements

Implications for performance Implications for repeatability

Low Greater precision: Can spend more time on calibration, path
correction, error removal, etc. However, this situation may
suggest lower-cost instruments, which often have fewer
performance-enhancing features

Greater consistency: Can increase the number of averages,
number of samples or sweep time (with average detectors).
May be able to use methods such as long RMS detection,
narrow video bandwidth or precise, time-intensive algorithms.

High Lower precision: The need for speed may lead to compro-
mises such as less accurate measurement techniques, lower
measurement resolution, fewer sweep points and faster
sweep speeds.

Lower consistency: Less time available for measurement
averaging and intricate, precise algorithms may mean greater
uncertainty and lower consistency..

Table 21.3. When repeatability dominates, the key relationship is once again between repeatability and speed.

Performance
Requirements

Implications for performance Implications for speed

Low May be lower: Low repeatability implies a larger error budget,
which may also infer lower-performance instruments (less
absolute accuracy).

Can go faster: When repeatability has low importance, less
time will be spent on improving measurement consistency

187
www.agilent.com/find/open

Repeatability and performance
In Tables 21.1 and 21.3 there is an
important secondary relationship
between repeatability and perfor-
mance. This is an indirect relationship
linked by measurement uncertainty.
When dealing with uncertainty, some
system developers create an “error
budget,” the size of which depends on
the margin between test requirements
and system uncertainty. The two
major contributors to uncertainty are
absolute accuracy (instrument perfor-
mance) and measurement consistency
(repeatability). If the instruments in
a system have high absolute accuracy,
then there is a wider margin in the
error budget for lower repeatability.
If the instruments provide consistent
results, that leaves more room in the
budget for somewhat lower absolute
accuracy.

Multiple “high” requirements
Satisfying requirements such as “high
speed with high repeatability” or
“high performance with high speed”
will probably require sophisticated
instrumentation that is somewhat
more expensive than less-capable
equipment. However, many high
performance instruments may
include hardware accelerators that
speed up time-consuming operations
such as averaging and calibration.
Some models may also include
multiple algorithms for calculating
parameters such as adjacent channel
power (ACP).�

If all three requirements rate “high”
then every element of the system—test
equipment, switching, cabling,
connectors, and so on—must be scru-
tinized. The best solutions will likely
demand a high price, but may provide
additional capabilities and benefits.

�	 As an example, some Agilent PSA
series spectrum analyzers include
a standard “ACP mode” and a “fast
ACP mode.” The fast mode provides
an accurate approximation of the
standard-compliant measurement.

Hint 2: Review the nature
and behavior of the DUT
A typical automated test system
performs three basic tasks: sourcing,
measuring and switching. Decisions
about which signal generators, power
meters, spectrum analyzers, network
analyzers, switch matrices and cables
to use depend on the electrical and
mechanical attributes of the DUT.
At RF and microwave frequencies, a
few essential characteristics require
special attention.

Electrical parameters
The basic nature of the DUT is a key
consideration: Is it passive and linear
or active and nonlinear? Passive,
linear devices are easier to deal with
because they typically have fixed gain
and phase shift at any allowed input
power level across their operating
bandwidth. In contrast, active
devices demand greater care because
they usually have a nonlinear oper-
ating region that is highly sensitive
to input power, producing different
results at different levels. Within
a test system, this may suggest the
addition of amplifiers or attenuators
to precisely control power levels, and
perhaps the addition of couplers to
split off and verify the power level
being delivered to the DUT. These
additions should not be taken lightly:
At high frequencies, every system
element has a complex-valued imped-
ance (with associated S-parameters),
and every additional connection
creates the possibility of undesirable
interactions with the DUT.

•	Avoid mismatches. An impedance
mismatch at any connection
can cause insertion loss, which
robs power from any sourced or
measured signal. As a truism,
power is expensive at high frequen-
cies—and it becomes more expen-
sive if it has to be delivered across

a wide frequency range. Hint: Use
high precision cables and acces-
sories, and fully characterize their
actual impedance using a vector
network analyzer (VNA), especially
if the DUT is an active device.

•	Minimize VSWR. The combination of
a switch matrix, its connectors, its
internal and external cables, and
even the bending radius of any RF
cables can induce errors caused
by voltage standing waves in the
DUT. Hint: To minimize this error,
use a switch matrix with a voltage
standing wave ratio (VSWR)
specification of 1.2:1 or better.

•	Enhance isolation. If your test
requirements call for simulta-
neous measurements of high- and
low-level signals then the isolation
specifications of the switch matrix
will affect measurement integrity.
Hint: If there are multiple pathways
through the DUT, use a signal
generator and spectrum analyzer
to characterize the isolation
properties to the extent possible.
If this can’t be done then the
system should be configured and
programmed to route high- and
low-level signals on non-adjacent
pathways or through separate
switch units.

Mechanical attributes
One set of details to consider is the
number and type of connectors for
signals and power (AC or DC). This
will influence factors such as the
required size of the switch matrix
and the complexity of system cabling.
Hint: Use a switch matrix with enough
ports to let you make all system-
to-DUT connections just once. This
will minimize delays while waiting
for signals to settle, and minimize
the chances of damaging the switch
matrix or DUT with sudden changes
in power level.

188 21. Six Hints for Enhancing Measurement Integrity in RF/Microwave Test Systems

Hint 3: Understand,
characterize and correct
RF signal paths
Without additional correction,
product specifications extend only
as far as the “calibration plane” that
exists at an instrument’s input and
output connectors. To achieve accu-
rate, repeatable measurements—and
corrected DUT results—we suggest
that you push the calibration plane
out as close as possible to the DUT.
There are several ways to achieve
this, whether the pathways are
passive or active and the DUTs are
local or remote.

Handling passive pathways
As just noted, passive devices have
fixed gain and phase shift at any
allowed input power level across
their bandwidth. However, every
connection along a passive path may
have an impedance mismatch, which
will cause insertion loss and phase
shifts (or delays). At high frequencies
seemingly simple passive elements
become complex transmission-line
elements, precluding simple algebraic
addition of losses and phase shifts
along the path. Hint: Use a VNA to
either measure the entire connected
path or characterize the S-param-
eters of each element and use vector
math to model the total loss and
phase shift of the entire path. These
values can be stored in the system PC
and applied as needed to correct a
measurement, or they can be applied
by a network analyzer, for example,
to enable real-time adjustment of
filters and other variable DUTs.�

�	 To learn more about S-parameter
measurements, please see Application
Note 154, S-Parameter Design, and
Application Note 1287-3, Applying
Error Correction to Network
Analyzer Measurements.

Correcting active pathways
The performance of active devices
may vary with changing input power.
The process required to improve
measurement accuracy depends on
whether the device is operating in
the linear or nonlinear portion of its
response. If an active device such as
an amplifier is operating in its linear
region—well below its 1-dB compres-
sion point—during both calibration
and measurement operations,
then corrections can be accurately
applied at any power level within
that region. Hint: If the active device
is operating in the nonlinear portion
of its response then the power level
used for a measurement must also
be used during calibration to ensure
accurate correction. If measurements
will be made at multiple power levels
in nonlinear mode, then individual
calibrations must be made at each of
those levels and stored for later use.

Hint: Check the frequency response of
the active device over the frequency
range of the DUT. Again, you should
either measure the entire path at
specific power levels or characterize
the S-parameters of each interface
and use vector math to create a
model that can applied after-the-fact
or in real time.

Hint: To simplify the process of
characterizing and correcting RF
signal paths, some system developers
minimize the use of active devices.
This reduces both the calibration
effort and the chance of errors
caused by variations in power level
when operating in nonlinear mode.

Dealing with DUT distance—
near or far
Accurate correction can be difficult
whether the DUT is mounted in a
fixture at the test system or located
several meters away in a test
chamber. Fixture-based measure-
ments are challenging because
pathways often include transitions
from coaxial cables to microstrip-
based shorts, opens and loads. Hint: If
high quality microstrip elements are
not available it will be necessary to
measure the fixture with a network
analyzer, model the impedance
and remove those effects from the
measurements.

When the DUT is remote, the main
issues are path attenuation in long
cable runs and path variation due to
temperature fluctuations and cable
flexion. Hint: Characterize path atten-
uation either by measuring the entire
pathway between the instrument and
the DUT (if possible) or by measuring
all elements along the path and
using vector math to combine their
complex-valued responses.

189
www.agilent.com/find/open

Hint 4: Be aware of
everything connected to
an instrument
Test equipment manufacturers
specify the performance of every
instrument up to the front-panel
connectors that source and measure
signals. From there, everything
that comes between the instrument
and the DUT can affect instrument
performance and measurement
repeatability. At RF and microwave
frequencies and power levels, the
three worst offenders are typi-
cally cables, switches and signal
conditioners.

Selecting the right type of cable
When specifying a test system you
will need to decide what type of
cabling to use for device interconnec-
tion, and you may be able to specify
the type used within the switch
matrix. As a general rule, a stable
cable will provide lower insertion
loss, better VSWR and, therefore,
greater measurement repeatability.
At high frequencies, the three most
commonly used types of cabling are
semi-rigid, conformable and fl exible.

Semi-rigid
As suggested by the name, these
cables do not easily change shape,
ensuring excellent performance
and repeatability. High quality
semi-rigid cables achieve additional
stability during the manufacturing
process through techniques such as
MIL-standard temperature cycling.
When applied after the forming
process, temperature cycling can
eliminate internal stresses that
may cause later deformation of the
preformed cable.

The quality of the dielectric used
in these cables also affects their
measurement performance. Solid
PTFE on is the most common
but contributes to insertion loss.
Expanded PTFE is currently the best
alternative, providing lower insertion
loss and wider frequency range. All
of this attention to detail is refl ected
in the cost of these cables, which is
considerably higher than conform-
able or fl exible cabling.

Conformable
These cables offer less stability
than semi-rigid cables because they
are easily shaped and reshaped.
Their fl exibility affects measure-
ment repeatability and long-term
reliability.

Flexible
Sometimes called “instrument-grade
cables,” these typically offer good
phase stability and low insertion loss
but at a relatively high price. They
also tend to be high maintenance,
requiring careful handling because
severe deformation can alter their
electrical properties and cause inac-
curate measurement results.

Avoiding switch-related
problems
Switching is central to overall
system functionality, automating
the connection of signals and power
supplies between instrumentation
and the DUT. Because most sourced
and measured signals pass through
the switch matrix, any shortcom-
ings in its specifi cations can affect
measurement performance, speed
and repeatability. At high frequen-
cies, three specifi cations are particu-
larly important: isolation, VSWR and
insertion loss.3

• Maximize isolation. Leakage between
signal paths can make it very
diffi cult to measure low-power
signals in the presence of one or
more powerful signals. (This is
most likely to occur when high-
and low-power signals are routed
through a switch matrix simultane-
ously.) Hint: Choose a switch with
isolation specifi cations of 90 dB
or better. This will reduce leakage
and potentially minimize the need
to route signals through physically
separate switch assemblies.

• Minimize VSWR. High VSWR can
cause phase errors and therefore
affect the accuracy of vector and
modulation measurements.4 VSWR
in a switch matrix is directly
related to the VSWR of the coaxial
switches used within the matrix,
and the VSWR of an individual
switch depends on its mechanical
dimensions and tolerances.

3 For detailed information, please see
the Agilent Custom Switch Matrices
product note, publication number
5966-2961.

4 Phase repeatability is another impor-
tant specifi cation to consider when
making these measurements.

190 21. Six Hints for Enhancing Measurement Integrity in RF/Microwave Test Systems

Hint: You can further minimize
VSWR by using cables that are
short compared to the required
bandwidth. If this is not practical
because of wide bandwidth or
mechanical requirements, the best
alternative is to add insertion loss
to the transmission lines via pads
or lossy cables. This will reduce
the amplitude of VSWR-induced
ripples over the frequency range
of interest, but at the expense of
higher overall insertion loss.

•	Manage insertion loss. This tends
to become a problem at higher
frequencies and is typically speci-
fied versus frequency in tabular
or equation form. Hint: As a switch
ages, its insertion loss may change
so look for specifications such
as “insertion loss repeatability”
or “insertion loss stability” that
are valid through the end of
the product’s expected lifetime.
Knowing this type of worst-case
value can help you manage your
error budget.

Evaluating signal conditioners
As described in Hint 3, the DUT, its
test requirements and its location
may dictate the insertion of passive
or active signal conditioners into the
signal paths. These can be standalone
devices or may be built into the
switch matrix. Amplifiers, attenua-
tors and frequency converters are
the most commonly used signal
conditioning devices.

Amplifiers
A signal might need additional gain
if a precise amplitude measurement
is required or if it is being sent over
a long cable run. Several key speci-
fications will help you determine
an amplifier’s suitability for your
application.

•	VSWR. Amplifiers are notorious for
having poor VSWR. Hint: Alleviate
VSWR problems by connecting an
attenuator or an isolator (though
these have limited bandwidth) to
the amplifier output.

•	Intermodulation. Amplifier
bandwidth is important when
measuring intermodulation distor-
tion or spurious signals outside the
bandwidth of the DUT. Hint: Beware
of amplifiers with poor dynamic
range or a low 1-dB compression
point, which can produce enough
intermodulation distortion to
affect harmonic measurements
in the presence of a strong
fundamental.

•	Spurs. Switching power supplies
may cause spurs that are related
to the switching frequency, which
is typically 100-200 kHz. Hint:
Avoid using amplifiers or any other
devices that contain switching
power supplies.

Attenuators
Electromechanical and electronic
designs provide different levels of
flexibility and precision in managing
signal levels. Electromechanical
attenuators use discrete switches
that typically provide stepped
resolution of 1 or 10 dB. Electronic
attenuators provide virtually
continuous settings with 0.1 or 0.25
dB resolution; however, those that
use PIN diode-type switches can
produce “video leakage” spikes that
may contaminate measurement
results. Hint: Cascade electrome-
chanical and electronic attenuators
as needed to provide greater control
of attenuation.

Hint: Pay attention to the plating
material used on attenuator connec-
tors. As an example, nickel becomes
nonlinear at high power levels and
will cause intermodulation distor-
tion. Instead, choose a higher quality
conductor such as gold.

Frequency converters
When the DUT is remote from the
test system, you can reduce inser-
tion loss in long cable runs by using
a downconverter to shift signals to
a lower frequency range. Hint: At
the test system, upconversion can
be used to restore the signal to its
original frequency, but it may be
necessary to also apply filtering to
remove unwanted frequency compo-
nents created during the conversion
processes.

Hint: If multiple signals, paths or
conversions are used when making
vector or modulation measurements,
some form of phase locking must be
used to ensure accurate results. You
can do this by connecting the instru-
ments and frequency converters to
a common frequency reference and
then measuring the phase of each
signal relative to the reference signal.

191
www.agilent.com/find/open

Hint 5: Examine the
operational attributes of
switches
When deciding what type of tech-
nology to use in a switch matrix,
it can be helpful to go beyond the
electrical performance and look at
operational attributes such as device
longevity, power requirements and
fail-safe operation.

Electromechanical versus
electronic
With numerous moving parts and
physical contacts, electromechanical
switches tend to suffer from rela-
tively rapid degradation, declining
repeatability and limited life. In
contrast, electronic switches have no
moving parts so offer longer life and
greater repeatability. In practice, the
best choice depends in part on the
actual number of switching cycles
a system will require; consider the
number of closures per test, the
number of tests per day, the expected
lifetime of the system and so on.

Another practical consideration is
the power level of the routed signals.
Switching of high power signals will
damage most switches, lowering
repeatability and shortening lifetime.
Hint: To prevent the premature
demise of either electromechanical
or electronic switches, program the
system instrumentation to reduce
signal levels before opening or
closing any switches in the matrix.

Latching versus non-latching
Internally, electromechanical
switches use either latching or
non-latching relays. Most latching
types need a 100-200 msec pulse
of DC power to open or close the
relay.� Non-latching switches require
constant powe—typically 24 V at 200
mA—to maintain contact. In a large
switch matrix non-latching switches
can generate enough heat within a
system rack to affect measurement
performance. Hint: If you choose to
use non-latching switches, check
the actual heat rise and be prepared
to include additional cooling in the
system rack.

Hint: It’s essential to know how
either type of switch will behave
after a power failure or emergency
shutdown. For maximum safety,
select a switch matrix that returns to
a known condition or configuration
when power is restored. Non-latching
switches are often the default failsafe
choice because they open when
power is removed and won’t close
again until power is applied by the
test program. However, latching
switches can be made fail-safe if they
include hardware and firmware that
will latch them into a safe mode at
power down.

�	 Another hint: To minimize power
requirements, some developers
program the system to actuate these
switches serially or in small batches,
though this causes longer total
switching time.

Advanced features: Built-in
signal conditioning
One advantage of having a switch
matrix in a system is that signal
conditioning can be built into the
matrix by the manufacturer. As an
example, Agilent’s custom switch
matrices can be configured with a
variety of devices, including ampli-
fiers and attenuators; filters and
isolators; and phase- and frequency-
translating devices such as mixers,
doublers, and dividers. These devices
are permanently connected with
semirigid coaxial cables and no
additional external cabling is needed.
The result is a compact, convenient,
one-box solution.

192 21. Six Hints for Enhancing Measurement Integrity in RF/Microwave Test Systems

Hint 6: Accelerate
measurement set up
and execution
Whether you gauge system perfor-
mance as devices tested per unit
of time, tests per unit of time or
another time-based metric, measure-
ment speed depends on two essential
factors: the time required to set up
the system and the time required to
perform the measurement. The three
major elements of any system— hard-
ware, I/O and software—can help or
hinder both processes. Chapter 7,
Maximizing System Throughput
and Optimizing System Deployment,
offers several useful tips about
software design, system I/O and
low-frequency instrumentation.
To complement that material, this
hint adds new information specific
to RF/microwave instruments and
systems.

Fine tuning individual
instruments
Any configurable device used in a
system can become a bottleneck
that limits measurement speed. The
latest generations of RF/microwave
instruments—signal generators,
power meters, spectrum analyzers
and network analyzers—offer flexible
features and capabilities that can
minimize bottlenecks and enhance
system performance.

Signal generators
Many of these are available with
built-in modulation and arbitrary
waveform capabilities, potentially
reducing the number of instruments
in a system, simplifying system
cabling and lessening software
complexity. Hints: Instrument configu-
ration may be somewhat complex
and time consuming, but you can
significantly reduce test time by
creating states ahead of time, saving
them in memory and then program-
ming the system to recall the saved

states as needed. If the system needs
to load arbitrary waveform data
during a test, download the minimum
number of points and use binary
format rather than ASCII.

Power meters
The biggest potential time savings
come from models that offer built-in
calibration capabilities that extend
the cal interval from hours to
months. Hint: Use digitizing power
meters that offer wide video band-
widths and fast data sampling. Some
of these units can generate 1,000 or
more corrected readings per second,
improving measurement accuracy
and repeatability through averaging.

Spectrum analyzers
With any spectrum analyzer, the
three key adjustments are frequency
span, points per measurement and
resolution bandwidth (RBW). Hints:
Using the fewest necessary points
and the widest possible RBW is the
easiest way to reduce measurement
time. Utilize a current-generation
spectrum analyzer that automatically
speeds things up by switching to Fast
Fourier Transform (FFT) mode when
measuring narrow spans.

Hint: To gain maximum benefit, use
automatic input ranging selectively.
When used to measure signals of
rapidly varying amplitude, auto
ranging may frequently change the
input attenuator settings and slow
the measurement. However, if signal
levels are low and relatively constant,
auto ranging can improve the
signal-to-noise ratio and also shorten
measurement time by allowing use of
wider span and RBW settings.

Network analyzers
Calibration of VNAs can be very time
consuming, especially the manual
connection of shorts and standards.
Hint: Agilent’s line of electronic cali-
bration or “ECal” modules automates
this process, offering faster and more
repeatable calibrations on one to four
ports through a single connection.

This method also reduces wear on
test-port connectors and calibration
standards.

Hint: The application of correc-
tion data is usually faster when
performed inside the analyzer
rather than externally in the system
controller. With most VNAs you
can save the calibration curve for a
specific test and recall it as needed.
Note that this method is more
effective when used over a series
of somewhat narrow frequency
spans than with one extremely wide
measurement span.

Conclusion
Every test system faces a unique
set of challenges, but in all cases
the ability to manage the direct and
indirect tradeoffs among perfor-
mance, speed and repeatability
will help you achieve the required
level of measurement integrity. The
ability to manage crucial tradeoffs
also applies to the selection of
instrumentation, I/O connections
and software elements for your test
system. Agilent is helping reduce the
number of compromises you have
to make by offering system-ready
instrumentation, PC-standard I/O
and open software environments.
By creating complementary system
elements and supporting continually
advancing standards such as LXI,
Agilent can help you optimize—and
even maximize—system performance
now and in the future.

193

22. Calibrating Signal Paths in RF/Microwave
Test Systems

Introduction
In any RF test system the ability to
achieve instrument-port accuracy
at the device under test (DUT) will
enhance measurement accuracy
and repeatability. Unfortunately,
the non-ideal nature of the cables,
components and switches in the
paths between the instruments and
the DUT can degrade measurement
accuracy. Vector or scalar calibration
is usually required to characterize
and correct for this loss of accuracy.

The proper calibration method
depends on both the type of
measurement and the signal path.
For example, measurements of gain
and phase require complex-valued
vector calibration, which is typically
performed with a network analyzer.
As another example, measurements
of power levels and frequency
content may be vector measurements
of modulated signals (accurate
phase information is essential) or
scalar measurements of continuous
wave (CW) signals. In these cases,
vector measurements are performed

with a network analyzer while the
scalar measurements are typically
performed with a signal generator
and a power meter or spectrum
analyzer.

This chapter provides an overview
of three approaches that can be
used to calibrate RF signal paths
and produce accurate, repeatable
measurements. It’s important to note
that these calibrations are a comple-
ment to—not a substitute for—the
calibration of individual instruments
within a system.

Understanding vector and
scalar calibration
Within any test system, common
elements such as fixturing, switching
and cabling will introduce offsets and
errors that will affect measurement
accuracy. The two types of calibra-
tions used to account for and correct
these errors are vector and scalar
calibration.

Vector calibration

This method requires measurements
of both the magnitude and phase
characteristics of the RF path. This
can be done by either performing
a network analyzer calibration at
the DUT’s input and output ports,
or by using a calibrated network
analyzer to measure the S-param-
eters of an RF path (see sidebar). The
latter method provides a complete,
complex-valued characterization of
the signal path.

Scalar calibration
This approach characterizes only
the magnitude characteristic of
the RF path, which is equivalent
to measuring only the magnitude
portion of the S21 transmission
coefficient in a vector calibration.
A common technique involves
driving one end of the path with a
signal generator and measuring the
signal at the other end with a power
meter. The magnitude portion of
the path response is determined by
subtracting the source power level

Reviewing S-parameters
Scattering parameters, commonly referred to as S-parameters,
are used to describe the way any device, component or path
modifies an applied signal. The computed S-parameter coef-
ficients are ratios of measured and applied signals at the ports
of the device.

In S-parameter annotation, subscripts are used to indicate the
ports of the device: the first number specifies the port that is
measured; the second number specifies the port where the
signal is applied. For example, S21 indicates a ratio of the signal
measured at port 2 versus the signal applied to port 1. In the
case of a two-port device (Figure 22.1) there are four S-param-
eters, each one describing the reflection or transmission of an
applied signal:

•	 S11, Reflection Coefficient. The ratio of the reflected signal
measured at port 1 to the signal applied to port 1.

•	 S21, Transmission Coefficient. The ratio of the transmitted
signal measured at port 2 to the signal applied to port 1.

•	 S22, Reverse Reflection Coefficient. The ratio of the reflected
signal measured at port 2 to the signal applied to port 2.

•	 S12, Reverse Transmission Coefficient. The ratio of the
transmitted signal measured at port 1 to the signal applied
to port 2.

To learn more, please see Application Notes 1287-3, Applying
Error Correction to Network Analyzer Measurements (pub.
no. 5965-7709E), and 1364-1, De-embedding and Embedding
S-Parameter Networks Using a Vector Network Analyzer (pub.
no. 5980-2784EN).

Figure 22.1. Modeling the RF signal path as a two-port device provides
the S-parameters needed for calibration and correction.

Two-port device
Port 1 Port 2

194 22. Calibrating Signal Paths in RF/Microwave Test Systems

setting (in dBm) from the measured
power level (also in dBm). This
is repeated at multiple frequen-
cies across the band of interest to
determine the overall magnitude
characteristic.

Scalar calibrations can achieve very
good results as long as high quality
components, adapters and cables are
used in the system. This helps mini-
mize measurement uncertainty and
increase measurement repeatability.
However, when compared to a full
vector calibration, scalar calibration
is less likely to detect any changes in
impedance match along a signal path.

Comparing the two methods
The best choice of calibration method
depends on factors such as the test
specification and its measurement
and accuracy requirements, the
likelihood of inaccuracies internal to
the measurement instruments, and
the availability of a network analyzer.
The advantages and disadvantages
of each method are summarized in
Table 22.1.

Defining our reference point
We will describe the application of
vector and scalar calibration to the
types of RF signal paths that are
present in most systems. The basic
system diagram shown in Figure 22.2
will be our reference point as we
explore three different methods that
can be used to characterize RF paths:

•	Vector calibration of a network-
analyzer path

•	Vector calibration of a non-
network-analyzer path

•	Scalar calibration of a non-
network-analyzer path

Performing vector
calibration of network-

Table 22.1. Comparing the advantages and disadvantages of vector and scalar calibration.

Calibration
type

Advantages Disadvantages

Vector • Enables complete characteriza-
tion of the path and, therefore,
more accurate measurements

• Allows adapter embedding and
de-embedding

• Provides excellent confidence in
path integrity

• Higher cost than scalar because
network analyzer is required

• Doesn’t account for inaccura-
cies internal to instruments
connected to the signal path

Scalar • Lower cost approach (network
analyzer not required)

• Can compensate for inaccura-
cies internal to instruments
connected to the path, which
may result in better overall
accuracy

• Not a complete characterization
of the path (magnitude only)

• Doesn’t support adapter embed-
ding or de-embedding

• Provides less confidence in path
integrity

Figure 22.2. The essential elements of a simplified RF/microwave test system

Signal
generator

Network
analyzer

RF switching

DUT

Spectrum
analyzer

195
www.agilent.com/find/open

analyzer paths
Network-analyzer paths are those
that connect a network analyzer
to the DUT. A vector calibration
enables the network analyzer to
precisely measure the complex-
valued S-parameters that fully
describe changes in magnitude and
phase versus frequency. S-parameter
measurements of the DUT are made
using a swept continuous wave (CW)
signal generated by the network
analyzer (Figure 22.3).

Network analyzers have built-in
routines that allow the instrument
to compensate for any cabling and
RF components that lie between the
instrument and the DUT. Mechanical
or electronic standards with known
characteristics (e.g., shorts, opens
and throughs) are used for this
purpose. By substituting the stan-
dards for the DUT and measuring
the response, the network analyzer
can generate and store error terms
that are recalled as needed to correct
measurements of the DUT. In this
case, the path data is retained in
a set of error terms stored in the
analyzer’s memory.

When calibrating network-analyzer
paths it is important to use the same
conditions that will be used to test
the DUT: all switch settings, power
levels, frequency ranges and so on
should be identical. This is especially
important if the DUT is an active
device that has linear and nonlinear
operating modes.

Removing adapter effects with
embedding

The connection of a mechanical stan-
dard or electronic calibration module
to the DUT cables will often require
an adapter on one or both ports of
the DUT cables. The addition of these
adapters may induce errors such as
impedance mismatches, reflections
and delays.

You can remove these effects by using
a process called adapter embedding,
which moves the calibration plane
towards the network analyzer (Figure

22.4) and ensures characterization
of just the signal paths of interest. In
this example, the embedding process
moves the calibrated reference plane
to the end of the DUT cable from the
end of the adapter, where the calibra-
tion standards are attached during
network analyzer calibration.

Performing vector
calibration of non-

Figure 22.3. Network-analyzer paths to and from the DUT

Signal
generator

Network
analyzer

RF switching

DUT

Spectrum
analyzer

Figure 22.4. Adapter embedding moves the reference plane closer to
the network analyzer, ensuring characterization of just the signal paths
of interest

Network
analyzer

Reference planeReference plane

AdapterCal StandardAdapter

196 22. Calibrating Signal Paths in RF/Microwave Test Systems

network-analyzer paths
Non-network-analyzer paths connect
instruments other than a network
analyzer to the DUT. The measured
signals may be either modulated
or CW.

Vector calibration of these paths
is accomplished by connecting a
calibrated network analyzer to the
path and measuring its S-parameters.
Prior to measuring the RF path, the
network analyzer is calibrated in a
standalone configuration with special
calibration cables. The results of
these path-calibration measurements
are stored in the system controller
for later recall and application.

Removing adapter effects with
de-embedding
Adapters may be required to connect
the network analyzer to each system
path during the calibration process.
The effect of these adapters is usually
very small if high quality adapters
are used; however, if their effect is
significant it can be removed using
a process called adapter de-embed-
ding. Adapter de-embedding effec-
tively moves the calibration plane
away from the network analyzer
(Figure 22.5) to ensure characteriza-
tion of just the signal path of interest.
In this example, the de-embed-
ding process moves the calibrated
reference plane from the end of the
calibration cable (where the calibra-
tion standards are attached during
network analyzer calibration) to the
end of the adapter where the system
path is connected.

Deriving additional benefits
In addition to high accuracy, two

additional benefits come from
network-analyzer characterization of
the system paths used for modulated
DUT measurements. One is greater
confidence in path integrity, which
comes from the ability to easily
measure characteristics such as the
return loss of the path (S11 and S22).
This allows for a more comprehen-
sive self-test of the system and helps
minimize the uncertainties caused by
input and output mismatches.

The other noteworthy advantage
is the ability to modify the path

data after a system calibration is
completed. This makes it possible to
account for separately characterized
adapters such as test fixtures or
circuit boards that interface to the
DUT. Combining these elements with
existing path data requires that all
S-parameters be known for both the
adapter and the path.

Performing scalar

Figure 22.5. When calibrating paths such as signal-generator-to-DUT-input,
adapter de-embedding moves the reference plane away from the network
analyzer, ensuring characterization of just the signal path.

Signal
generator

Network
analyzer

DUT

Adapter

Adapter

Reference
plane Reference

plane

197
www.agilent.com/find/open

calibration of non-
network-analyzer paths
While the primary measurement
instrument for vector calibration is a
network analyzer, the main instru-
ment used for scalar calibration is
a power meter, which is the most
accurate way to measure absolute
power. Scalar calibration also
requires a signal generator, which
is used to provide signals of known
frequency and power. This method
typically requires a two-part process
that first characterizes the pathway
to the DUT input then the signal path
from the DUT output.

Characterizing the path to the
DUT input
The first path to measure is the one
that connects the signal generator
output to the DUT input (Figure
22.6). You can characterize the loss
through this path using a power
meter connected to the end of the
DUT cable (in place of the DUT
input).

The signal generator is configured
to provide signals at the range of
frequencies and power levels that
will be used when testing the DUT.
The power meter measures the power
output at each frequency and power
level, and the offsets (in dB) are
calculated and stored in the system
controller for later use. The calcu-
lated offset accounts for path loss as
well as some inaccuracies internal to
the signal generator.

This is a scalar measurement because

only the magnitude is calculated;
there is no phase information. This
is usually acceptable because the
absolute phase of the signal incident
at the DUT input is not important as
long as the magnitude response is
relatively flat and the phase response
is linear over the frequency band of
interest.

Note a key assumption here: The
accuracy of this method depends on
minimal mismatch between the input
impedance of the DUT and the input
impedance of the power meter. It is
important to verify these impedances
because a large difference will cause
significant measurement errors.

Characterizing the path from
the DUT output
To complete the scalar calibration,
we measure the signal path from the
DUT output to the spectrum analyzer
(Figure 22.7). The loss through
this path can be characterized by
applying a known signal source,
reading the power level measured
by the spectrum analyzer then
subtracting the path to the DUT input
(described in the previous section).

Figure 22.6. By substituting a power meter at the DUT input, you can
measure loss through the input path.

Signal
generator

Power
meter

RF switching

DUT

Spectrum
analyzer

Figure 22.7. By substituting a feed-through for the DUT, you can measure
loss from the DUT output to the spectrum analyzer.

Signal
generator

Feed-through

RF switching

Spectrum
analyzer

198 22. Calibrating Signal Paths in RF/Microwave Test Systems

You can do this by (1) using a
feed-through to connect the DUT
input cable directly to the DUT
output cable, (2) setting up the signal
generator to output the required
range of frequencies and power levels
and (3) making power measurements
with the spectrum analyzer.

The spectrum analyzer should be
configured just as it will be for DUT
measurements. This is especially
true of the input attenuator settings,
which often cause wide variations
in the spectrum analyzer’s input
impedance. The resulting calculated
offsets will account for path loss as
well as some inaccuracies internal to
the spectrum analyzer.

Note a key assumption here as well:
The accuracy of this calibration
depends on the impedance of the
DUT output cable being very similar
to the input impedance of the power
meter. It is important to verify these
impedances because a large differ-
ence will cause significant measure-
ment errors.

Measuring adapter effects
Accounting for adapters necessary
to perform scalar-path calibrations is
usually accomplished by estimating
or measuring adapter loss at various
frequencies of interest and then
accounting for those losses in the
offset calculations. However, this is
much less accurate than the adapter
embedding and de-embedding
procedures described in the vector
calibration sections.

Conclusion
The use of vector and scalar calibra-
tion can increase measurement accu-
racy by helping you correct for errors
in the RF signal paths. Each method
has advantages and disadvantages,
and the choice depends on both the
type of measurements you’re making
and the nature of the signal path.

This chapter reviewed three different
to methods of characterizing the
RF path: vector calibration of
network-analyzer paths, vector
calibration of non-network-analyzer
paths and scalar calibration of
non-network-analyzer paths. When
performing vector calibration of
network-analyzer paths, the tech-
nique of adapter embedding ensures
characterization of only the signal
paths of interest. Adapter de-embed-
ding provides the same benefits
when you’re performing vector
calibration of non-network-analyzer
paths. Within the context of your
specific measurement needs, each
method provides valuable calibration
benefits.

199

Glossary of Test-System Development Terms

Adapter — the LAN card and connector
that provides an electrical interface to the
network

ATE — Automated test equipment

ATS — Automated test system

AWG — Arbitrary waveform generator

Bridge — a LAN device that connects
segments of a network

CASS — Consolidated Automatic Support
System

COTS — Commercial off-the-shelf

DDNS — dynamic domain name server;
a service that allows a network device to
establish its host name when it connects
to the network. This lets other devices
use that host name with DNS to find the
device’s IP address and connect to it.

DHCP — dynamic host configuration
protocol; a method of automatically
obtaining an IP address for a LAN-
connected device (e.g., PC, router,
instrument, etc.)

DMZ — De-militarized zone; a firewall
configuration that helps secure the private
LAN

DNS — domain name server; maps
specific names to IP addresses, enabling
use of names in place of IP addresses in
testprograms

DoD — United States Department of
Defense

DUT — device under test; the component,
subassembly or product to be measured by
the test system

eCASS — The modernized version of CASS

Ethernet — a specific LAN technology
that is the dominant implementation of the
physical and data link layers; also known as
IEEE 802.3

Firewall — a hardware device or software
program (or combination) that protects
a computer network from unauthorized
access

Gateway — a hardware device that
connects devices that use different stan-
dards and protocols (e.g., LAN to GPIB)

GPIB — General Purpose Interface Bus;
the dominant 8-bit parallel I/O connection
for test equipment and test systems

Hub — a multi-port LAN device that
connects multiple devices together, usually
in a star topology

ICS — Internet connection sharing

IF — Intermediate frequency

IP— Internet protocol; requires an address
to communicate

IPX — Internetwork Packet eXchange; a
communication protocol used in the Novell
Netware network operating system

LAN — local area network

LXI — LAN eXtensions for Instrumentation

MAC — media access control; every LAN
device has a unique MAC address

NAT — network address translation; maps
private addresses to one or more public
addresses to enable access to an intranet
or the Internet

NetBEUI — NetBios Extended User
Interface; a network communication
protocol used in many versions of Windows

NxTest — Next-generation Automatic Test
Systems

OEM — Original equipment manufacturer

PCI — Peripheral Component Interconnect

PXI — PCI eXtensions for Instrumentation

RF — Radio frequency

Router — a LAN device that joins multiple
networks and enables creation of small,
private networks

SI — Synthetic instrumentation

SIWG — Synthetic Instruments Working
Group

SPX — Sequenced Packet eXchange; a
communication protocol used in the Novell
Netware network operating system

Subnet — a group of connected network
devices; used to partition networks into
segments for easier administration

Subnet mask — a setting that accom-
panies an IP address and defines the
boundaries of a subnet

Switch — a LAN device that connects
multiple devices to a single LAN line;
however, unlike a hub, it preserves full
network bandwidth to each device

TCP/IP — Transfer Control Protocol and
Internet Protocol; the two standards that
provide the data communication foundation
of the Internet

Technology insertion — The introduction
of new or improved hardware or software
capabilities into an existing system

TPS —Test program set

USB — Universal Serial Bus; designed to
replace the RS-232 and RS-422 serial buses
used in PCs

VME or VMEbus — Versa Module
Eurocard

VXI — VME eXtensions for Instrumentation

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confidence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/find/removealldoubt

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

Agilent
Open

www.agilent.com/find/open
Agilent Open simplifies the process of
connecting and programming test systems
to help engineers design, validate and
manufacture electronic products. Agilent
offers open connectivity for a broad range
of system-ready instruments, open industry
software, PC-standard I/O and global
support, which are combined to more
easily integrate test system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more efficient
connectivity. Agilent is a founding
member of the LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada	 877 894 4414
Latin America	3 05 269 7500
United States	 800 829 4444

Asia Pacific
Australia 	 1 800 629 485
China	 800 810 0189
Hong Kong 	 800 938 693
India 	 1 800 112 929
Japan	 81 426 56 7832
Korea	 080 769 0800
Malaysia 	 1 800 888 848
Singapore 	 1 800 375 8100
Taiwan	 0800 047 866
Thailand 	 1 800 226 008

Europe
Austria	 0820 87 44 11
Belgium 	3 2 (0) 2 404 93 40
Denmark	 45 70 13 15 15
Finland	3 58 (0) 10 855 2100
France	 0825 010 700
Germany	 01805 24 6333*
	 *0.14€/minute
Ireland	 1890 924 204
Italy	39 02 92 60 8484
Netherlands	3 1 (0) 20 547 2111
Spain	3 4 (91) 631 3300
Sweden	 0200-88 22 55
Switzerland (French) 	 41 (21) 8113811 (Opt 2)
Switzerland (German) 	 0800 80 53 53 (Opt 1)
United Kingdom	 44 (0) 118 9276201
Other European Countries:	
www.agilent.com/find/contactus
Revised: May 7, 2007

Windows is a U.S. registered trademark
of Microsoft Corporation.

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, June 27, 2007
5989-5367EN

jfox
Text Box
2012

jfox
Text Box
May 7, 2012

