Test-System
Development Guide

A Comprehensive Handbook
for Test Engineers

Open the door to
simpler system creation

Agilent Technologies

2 Test System Development Guide

Contents

Introduction 6

Section 1. Test System Design 6

Section 2. Networking Choices 6

Section 3. LXI: The Future of Test 6

Section 4. RF/Microwave Test
Systems 6

Section 1.
Test System Design 7

Overview 7

1. Introduction to Test-System
Design 9

Introduction 9

Transforming test into a strategic
advantage 9

Test-system considerations 10

Planning your test system 10

Control decisions 12

Planning for the future 16

Conclusion 16

2. Computer 1/0
Considerations 19

Introduction 19

Proprietary /0 versus industry-standard
170 19

GPIB interfaces 20

USB interfaces 20

LAN interfaces 21

Which 170 interface should you use? 23

Conclusion 26

3. Understanding Drivers and
Direct1/0 27

Introduction 27

History 27

Choosing and using instrument drivers 31
Conclusion 34

4. Choosing Your Test-System
Software Architecture 35

Introduction 35

Gathering and documenting software
requirements 36

Programming and controlling your
instruments 38

Collecting and storing the test data 38

Designing the user interface 40

Choosing the development
environment 42

Working with open standards 44

Developing a test sequence 46

Planning for software reuse 47

Conclusion 50

b. Choosing Your Test-System
Hardware Architecture and
Instrumentation 51

Introduction 51

System architecture 51

Choosing instruments for your test
system 59

Example test system 61

Conclusion 64

6. Understanding the Effects
of Racking and System
Interconnections 65
Introduction 65

Choosing racks and accessories 65
Instrument layout 66

AC power distribution 73
Conclusion 74

1. Maximizing System
Throughput and Optimizing
System Deployment 75

Introduction 75

Upfront design decisions affect
throughput 76

Fine-tuning your system for speed 84

Conclusion 86

8. Operational
Maintenance 87

Introduction 87

Worldwide considerations 87
Calibration 89

Diagnostics and Repair 90

Cleaning 91

Upgrades and expansion 92
Conclusion 92

Section 2.
Networking Choices 93

Overview 93

9. Using LAN in Test Systems:
The Basics 95

Introduction 95

Coping with complexity 95
Setting the standard 96
Using LAN in test systems 98
Conclusion 100

10. Using LAN in Test Systems:
Network Configuration and
Basic Security 101

Introduction 101

Creating a safe haven 101

Understanding the pitfalls 101

Designing the private, protected LAN 102
Conclusion 105

11. Using LAN in Test Systems:
PC Configuration 107

Introduction 107

Creating the right environment 107

Exploring network settings in Windows XP
and Vista 107

Using multiple network connections 108

Managing IP addresses 108

Configuring LAN with Agilent 10 Libraries
Suite 109

Conclusion 110

12. Using USB in the

Test and Measurement

Environment 111

Introduction 111

USB in the PC universe 111

Agilent support for USB instrument
connectivity 112

Setting up USB instruments with the
Agilent 10 Libraries 113

Conclusion 116

4 Contents

13. Using SCPI and Direct 1/0
vs. Drivers 117

Introduction 117
Deciding how to communicate 117
Sketching the big picture 117
Achieving communication 118
Exploring the application alternatives 120
Maximizing performance and

flexibility 121
Assessing 1/0 software alternatives 123
Conclusion 124

14. Using LAN in Test Systems:
Applications 125

Introduction 125

Scenario 1: Sharing instruments 125

Scenario 2: Remote monitoring and data
acquisition 127

Scenario 3: Functional test systems 130

Configuring a VPN 131

Comparing network performance 133

Conclusion 134

15. Using LAN in Test Systems:
Setting Up System I/0 135

Introduction 135

Simplifying LAN-based instrument
connections 135

Assessing the Agilent 10 Libraries
Suite 135

Connecting instruments to LAN 137

Conclusion 140

Section 3.
LXI: The Future of Test 141

Overview 141

16. Value, Performance and
Flexibility: The Promise of
LXI 143

Introduction 143

Why test managers are asking for a new
approach 143

Addressing the challenges with LXI 144

The advantages of LXI 146

A closer look at LXI 150

Exploring new possibilities with LXI 153

Appendix 16A: Defining synthetic
instruments 155

Appendix 16B: Creating cost-effective
measurement solutions with Agilent
Open to test your way 156

17. Transitioning from GPIB
to LXI 157

Introduction 157

Comparing system architectures 157
Setting up an LXI system 159
Simplifying software changes 160
Conclusion 161

18. Creating Hybrid Test
Systems with PXI, VXI and
LXI 163

Introduction 163

Assessing modular systems 163
Exploring LAN-based hybrid systems 165
Going beyond hybrid to all-LXI 167
Conclusion 168

19. Assessing Synthetic
Instruments 169

Introduction 169

Reviewing the roots of SI 169

Putting Sls in perspective 170

Comparing present and future
approaches 170

Exploring the initial applications 173

Utilizing current Sl devices 174

Conclusion 176

Section 4.
RF/Microwave Test
Systems 177

Overview 177

20. Optimizing the Elements
of an RF/Microwave Test
System 179

Introduction 179

Letting the DUT define “future” 179

Reviewing some essential
considerations 180

Translating requirements into optimized
equipment choices 181

Pulling it all together 184

21. Six Hints for Enhancing
Measurement Integrity in RF/
Microwave Test Systems 185

Introduction 185

Hint 1: Prioritize performance, speed and
repeatability 185

Hint 2: Review the nature and behavior of
the DUT 187

Hint 3: Understand, characterize and
correct RF signal paths 188

Hint 4: Be aware of everything connected
to an instrument 189

Hint 5: Examine the operational attributes
of switches 191

Hint 6: Accelerate measurement set up and
execution 192

Conclusion 192

22. Calibrating Signal Paths
in RF/Microwave Test
Systems 193

Introduction 193
Understanding vector and scalar
calibration 193

Performing vector calibration of network-

analyzer paths 195
Performing vector calibration of non-
network-analyzer paths 196
Performing scalar calibration of non-
network-analyzer paths 197
Conclusion 198

Glossary of Test-System
Development Terms 199

www.agilent.com/find/open
5

Introduction

The Agilent Test-System
Development Guide is a compre-
hensive handbook for test engineers
who need to maximize performance
and flexibility while minimizing cost
and complexity. Throughout, you’ll
find practical advice and real-world
examples that illustrate the deci-
sions involved in overall system
architecture, networking solutions,
and instrumentation hardware and
software.

The Guide is divided into four
sections, beginning with the basics
of test system design, following by
networking decisions, the new LXI
instrumentation standard, and
special considerations for RF/
microwave tests:

6 Introduction

Section 1.
Test System Design

Starting with the fundamental
philosophies of test system design,
the eight chapters in this section
cover I/0 considerations, decisions
regarding software and hardware
architectures, racking and system
interconnects, data throughout opti-
mization, test planning, and various
deployment issues.

Section 2.
Networking Choices

These seven chapters explore the
networking choices available for
today’s test systems. Local area
networking (LAN) is covered in
detail, including both network and
PC configuration. The Universal
Serial Bus (USB) is also covered

as a networking option, as well as
decisions regarding drivers and I/O
software.

Section 3.
LXI: The Future of Test

This section offers an in-depth
analysis of LXI, a new measurement
platform that combines the advan-
tages of PC-based connectivity with
the flexibility of card-based instru-
mentation—without the disadvan-
tages of a conventional cardcage. LXI
offers greater flexibility by incorpo-
rating a variety of current and future
instrument form factors, lower costs
and smaller footprint by eliminating
the cardcage, and increased security
through the use of a private LAN.
This section explains why LXI can
meet future test needs more effec-
tively than current approaches and
how to make the transition from
GPIB-based systems.

Section 4.
RF/Microwave Test
Systems

RF/microwave test systems present a
number of unique challenges, partic-
ularly in the face of increasingly
complex devices and test require-
ments. This section offers advice on
configuring test systems that balance
the need for performance, speed, and
repeatability.

Please visit www.agilent.com/find/open
for the latest information on the
products discussed in this handbook.

All trademarks mentioned in this
handbook are the property of their
respective owners.

Section 1. Test System Design

Overview

The eight chapters in this section
offer a comprehensive introduction
to designing and deploying an
automated test system:

1.

Introduction to Test System Design,
covers test-system philosophy
and planning and discusses how
test is used in three sectors:
R&D, design validation and
manufacturing.

Computer 1/0 Considerations,
describes the advantages of using
computer-industry standard I/0
and explores the advantages and
disadvantages of GPIB, USB and
LAN interfaces for rack-and-stack
test systems.

Understanding Drivers and Direct
1/0, answers common questions
about the use of drivers and
direct I/O to send commands
from a PC application to the test
instrument.

Choosing Your Test-System Software
Architecture, helps you choose
the direction for your software
based on the application you
have in mind and the amount of
experience you have. It explores
the entire software development
process, from gathering and
documenting software require-
ments through design reuse
considerations.

Choosing Your Test-System Hardware
Architecture and Instrumentation,
explores the hardware architec-
ture decisions you must make
before you begin building your
system to ensure that it provides
you with the performance and
flexibility you need. It also
discusses issues you should
consider as you select instru-
ments for your system.

Understanding the Effects of Racking
and System Interconnections,
discusses the important consid-
erations for arranging your test
equipment in a rack, including
weight distribution, heat dissipa-
tion, instrument accessibility and
ease of use. It also explores ways
to minimize magnetic interfer-
ence and conducted and radiated
noise to maximize measurement
accuracy.

Maximizing System Throughput

and Optimizing System Deployment,
discusses hardware and software
design decisions that affect
throughput, including instrument
and switch selection, as well as
test-plan optimization and I/0
and data transfer issues. It also
presents ways to optimize your
system as you prepare to

deploy it.

perational Maintenance, addresses
key issues to consider once

your system is operational,
including worldwide deployment,
calibration, diagnostics and
repair, cleaning, upgrades and
expansion.

8 Section 1. Test System Design

1. Introduction to Test-System Design

Introduction

This chapter offers an overview

of the process of designing test
systems, beginning with a discussion
of how carefully designed systems
can transform test into a strategic
competitive advantage. The chapter
then walks you through the key
factors to consider when designing
a test system, choosing the level of
automated control, and planning
for future needs. It concludes with
a comparative case study of testing
power supplies using manual, semi-
automated and automated control.

Transforming test into a
strategic advantage

Functional test is fundamental to

the electronics world. In the past,
test has been treated as a necessary
expense, but enlightened companies
have realized that test can be a signif-
icant asset. A test system can be used
for far more than simply verifying the
limits of the device under test (DUT).
Consider these possibilities:

* find the weaknesses of the device—
before your customers do

predict failures or out-of-spec
trends in production

» search for the boundaries of the
design—to stretch specifications
or search for something you didn’t
know the product could do

verify the long-term characteristics
of the product

* optimize a production process
¢ test for environmental limits

* find the weaknesses in a
competitor’s product

Test can be used simply as a gating
factor for “good” or “bad” devices, or
it can be used to gain a competitive
advantage. This chapter offers an
overall view of how tests are made,
techniques to optimize tests, and a
number of methods you can use to
your advantage. It covers the three
primary sectors of the product life
cycle that require test: R&D, design
validation, and manufacturing.
Other chapters cover such topics

as hardware architecture, choosing
instruments, software architecture,
computer I/O and connectivity,
assembling a test system, maximizing
throughput, and optimizing deploy-
ment and maintenance.

A systematic test-system design
process as outlined in this guide
will assist you to quickly design a
test system that produces reliable
and repeatable results, meets your
throughput requirements, and does
so within your budget. For further
information regarding test-system
design, you can refer to the book
from which much of the informa-
tion in this chapter was derived:
Test-System Design, A Systematic
Approach by Tursky, Gordon, and
Cowie (Prentice Hall, 2001).

The earlier a product weakness is
discovered, the less expensive the
consequences. That’s one reason
why the role of test changes with

the stage of the product life cycle.
When a product is first developed,
the role of test is to verify that the
design concept is viable. This calls
for quick measurements, usually with
hands-on use of discrete test instru-
ments. Sometimes there is a need to
load measurement data into an Excel
spreadsheet for use in a lab report or
for further analysis.

Excel is the most common software
analysis tool for the R&D engineer.
The connection is usually simple:

a PC connected via GPIB or USB

to an instrument or a small set of
instruments. Simple software, such
as Agilent IntuiLink, finishes the
connection.

Once the design becomes more solid,
there is a need to find its limits and
weaknesses. That’s where the design
validation system comes in. To make
the results more repeatable and less
dependent upon operator expertise,
the test system is automated using a
PC and some sort of graphical soft-
ware such as Agilent VEE or National
Instruments LabVIEW.

Graphical software, often used for
design validation testing, gives the
engineer a more comprehensive set
of tools for control and analysis,
while at the same time creating

a more repeatable measurement
process that may include remote
control of sources, measurements,
and system switching. The same
instruments used in the R&D bench
system are often used in design
validation. This gives continuity to
the whole process, so that the initial
R&D measurements can be compared
to those made for design validation.

Textual software generally provides
an effective programming environ-
ment for manufacturing test, as

it enables the engineer to extract
the highest throughput from the
test system. In manufacturing,
repeatability and reliability become
paramount concerns. Again, if the
same equipment can be used for all
three test situations (R&D, design
validation, and manufacturing), then
the R&D engineer can more readily
assist with any problems that may
arise during manufacturing test.

The process of designing and
integrating systems used for elec-
tronic test requires more than simply
coding instrument commands to
automate the measurements made
on the R&D bench. The instruments
are only one part of the complete test
system; cables, software, test-plan
documentation, and fixturing are
equally important. The latter are
especially prevalent in a manufac-
turing environment.

Test-system
considerations

There are many factors to consider
when developing a test system. The
three main driving factors are test
requirements, development time,
and test cost. The factor that is most
important will drive the other two.
For example, if the test requirement
is for a very accurate measurement,
as in R&D or design validation,

you must be willing to take a bit
more time to achieve the required
accuracy. On the other hand, the
manufacturing manager would not
be pleased if the test system were to
perform more tests than required,
or perform them at a higher-than
needed level of accuracy, due to the
obvious impacts on test-system cost
and throughput.

Before the process to design a test
system can begin, you must have

a good understanding of the test
application. This goes beyond simply
understanding the device you are
testing, as you must also be aware
of other factors such as the skill
level of the test system operator,

the operating environment, and any
standards requirements.

10 1. Introduction to Test-System Design

Planning your test system

Creating a comprehensive test plan
allows you to take a big-picture

view of the project and forces you to
focus on meeting the objectives and
requirements for the test system. The
result is a considerable time saving
in the development process.

Even in the R&D environment, there
are times when it is useful to create
a test plan, so that you can docu-
ment and compare results after each
design cycle. You must also consider
the future for any test system you
create today. It may be reasonable
to create a dedicated and somewhat
inflexible test system on some
high-volume projects, but it is usually
more appropriate to create a system
that has the flexibility to adapt to
future needs.

The test plan describes more than
just the requirements of the DUT. It
should also cover other areas of the
test such as the level of experience
required of the test system operator,
calibration and maintenance require-
ments, physical limitations, and
throughput requirements.

The first step in creating a test
system is to seek out and compile all
the information needed to create an
overall test plan. Important informa-
tion includes the following:

* functional and parametric tests to
be performed

* DUT design validation criteria

* format and usage of test results,
including sharing data throughout
the enterprise

* number of tests

* DUT pin counts

physical constraints such as size,
environment, and available power

heat buildup and power dissipation

* how the test system will be veri-
fied, maintained, and calibrated

¢ RF environment

accuracy and resolution
requirements

throughput goals
* development time constraints

* software-development and runtime
environment

cost constraints

continuity constraints with
existing legacy systems

Among the decisions involved in
determining the design of a test
system, the most obvious is what it is
you must test. This is usually defined
in a test specification. The test speci-
fication should include a complete
list of the product functions to be
verified, operating parameters to
meet, and any regulatory standards
to adhere to.

Accuracy

System accuracy is a critical speci-
fication of any test system, and the
overall test plan should include both
the accuracy requirements of the test
and the recommended margin. As a
minimum, the test equipment should
have twice the accuracy specified for
the DUT. To maintain this margin
requires that the operating tempera-
ture be maintained closely and

that calibration cycles be followed
faithfully.

Often, it is more cost effective to buy
test equipment with a 10X accuracy
margin so that calibration and
maintenance requirements can be
relaxed without affecting accuracy.
In the “10X” case, you may even
increase the product yield, since

the product can come closer to its
specification tolerance limits because
you can count on the accuracy of the
test system. Whatever the accuracy
required, you must have confidence
that you can rely on the results.
Obviously, a calibration and mainte-
nance plan is important for achieving
the required test accuracy.

When determining instrument
requirements, resolution must

be specified as well as accuracy.
Accuracy defines how close a
measurement agrees with a stan-
dard value. Resolution indicates
the smallest change that can be
measured. There may be times
when the absolute accuracy over
an extended period is not as impor-
tant as the resolution to measure
small changes over the short term.
Switching, fixturing, and cabling also
add noise and crosstalk that can
increase uncertainties.

Throughput

Throughput requirements will direct
the necessary system capacity.
Throughput is normally more
important in the manufacturing
environment than during design
validation and rarely a concern

in R&D. However, some complex
designs require lengthy testing to be
validated before going into produc-
tion. A significant delay during R&D
or design validation can cause a
product launch to be delayed, and
be costly in terms of missed market
opportunity.

Downtime seriously degrades
test-system throughput and can

have a significant impact on product
shipments. Predicting and preparing
for wear-out mechanisms can reduce
downtime. Further, using diagnostics
or built-in test can help determine
when the test system is about to

fail. Such preventative maintenance
procedures can result in big savings
when they identify a test system
failure before many DUTSs are errone-
ously tested. In all cases, whether in
R&D, design validation, or manu-
facturing, you should consider how
you will handle downtime, either
with spare test equipment or with a
known path to repair or rental.

The overall test plan is a good place
to describe what diagnostics the test
system will require. It is easy to over-
look test-system diagnostics as time
consuming and costly to develop.
Diagnostics are an important tool for
maintaining throughput by reducing
the downtime to repair failures. On
most systems, a well-thought-out
diagnostics approach will shorten
test-system deployment time as

well. Developing and following a
calibration and maintenance plan

in conjunction with the diagnostics
is another way to prevent system
failures that disrupt test-system
throughput.

Results

Obviously, all tests must produce
results. Sometimes this is merely a
simple pass/fail indication, but often
test results must be analyzed and
archived. These requirements must
also be defined in the overall test
plan. If the test sequence is short,

a few minutes or so, it is simpler

to perform all data analysis after

the test is over. However, if the test
sequences are lengthy, some interme-
diate data analysis is recommended
so that failing functions can be
detected early enough to halt the test
and avoid wasted time.

Hardware/software decisions

Once the requirements of the test
system have been established in the
test plan, then it is time to outline
the design of the test system itself.
The question is: What to consider
first—software or hardware? In the
past, the hardware provided the lead
in test-system development. The test
instruments that met the accuracy
and throughput requirements were
defined first, and then software was
created to automate the test system.

But today, software can often be
more expensive to develop than
the cost of the hardware, so if test
system cost is a driving factor, it is
important to make sure that a new
system can use as much existing
software as possible.

The choice of programming languages
may be based primarily on the expe-
rience of the programmer. Some find
graphical languages such as Agilent
VEE or LabVIEW easy to use. Others
believe that textual languages such
as C++, MATLAB or Visual Basic are
easier to use, especially for complex
test programs. If it is important to
use existing textual test code, then a
multi-language development environ-
ment like Microsoft® Visual Studio
.NET is a definite advantage. For a
thorough examination of test-system
software options, see Chapter 4,
Choosing Your Test-System Software
Architecture.

In any case, it is critical to ensure
that drivers exist for the selected
equipment. If the required drivers
and support are not available, the
anticipated advantages provided by
the selected language may not mate-
rialize. Driver issues are discussed
in detail in “Understanding Drivers
and Direct 1/0.”

1

Control decisions

A major consideration for a test
system is the level of automation to
build into the system to control the
test process. Manual control requires
that a human operator make all of the
test connections, set the instruments,
and then record the data. Increasingly,
even in simple R&D setups, most
engineers prefer to use instruments
under the control of a PC in order to
have a record of the test.

Table 1.1. Comparison of test system control options

Instrument cost

Varies; can be higher than

Once the testing becomes more
complex or repetitive, a fully auto-
mated test system is in order. A fully
automated test system takes care

of signal switching, measurement,
recording, and even analysis of the
results for pass/fail determination.
Once the DUT is in the test fixture,
the test system takes over and runs
all of the tests. This is the ultimate in
terms of test speed, reliability, and
repeatability, but it is also the most
expensive and time consuming to
develop.

Semi-automated

Similar to manual

automated, since R&D typi-
cally needs more accuracy
than production specs

The type of control, either manual,
semi-automated, or fully automated,
should be determined early as it

will influence which instruments
you select. As shown in Table 1.1,
many factors influence which control
method is most suitable for your
application.

Automated

Depends on requirements; if space is
paramount, cardcages can be used, but
they are typically more expensive than
standalone rack & stack instruments.
Modular instruments may meet space
needs with full compatibility to rack and
stack instruments

Development cost Very low; just hook up and Low or high depending upon High
go how much is automated
Operator experience Very high, often experienced High as the manual portions Low
engineers of the system may require an
engineer
Development time Low Low to high High
Flexibility High; changes can be made =~ Medium; some portions can Low; changes require significant effort
easily easily be changed.
Throughput Low Medium High
Repeatability Varies with expertise Medium High
System calibration Rare; usually only each Some system calibration may Full system calibration is possible
instrument is calibrated be possible

Self-check diagnostics

Individual instruments only,
not system diagnostics

Individual instruments only,
not system diagnostics

Common

Ease of instrument reuse High Medium Low if card cage, medium if stand alone
or modular instruments
Potential for human error High Medium Low

12 1. Introduction to Test-System Design

Manual control

A test system based on manual
control depends entirely on the
operator for all test functions (Figure
1.1). Connections between the DUT
and instruments are made manu-
ally with test leads or cables. R&D
engineers may follow procedures that
are completely undocumented, but
when using a manual control system
for other test requirements, each
instrument is normally manually
operated by following a documented
procedure. The results of each test
are then manually recorded. This

is a very flexible approach as it
allows changes to the test system to
be made very easily. On the other
hand, it is a very slow method of
testing and has significant problems
with repeatability. For example, the
engineer may make readings one time
with the voltmeter at full scale, while
the next reading might be at 1/10

of full scale, resulting in a slightly
different answer.

Manual control is often the least
expensive test-system control option
to set up, since it may not include
such items as a system switch, expen-
sive software, or test fixtures. Also,
the time and cost required to set up
the test are very low. However, the
instrument cost for manual control
varies. Often, the R&D application
calls for a more accurate measure-
ment than the equivalent measure-
ment needed in manufacturing and
therefore requires rather expensive
instruments.

The cost to conduct the test is usually
very high. Manual control generally
requires a skilled operator to follow
the labor-intensive test procedures.
System self-testing is almost impos-
sible, and complex and frequent cali-
bration is often required due to the
high accuracies needed. Typically,
only the individual instruments are
calibrated and not the entire system.
As a result, inexperienced engineers
may believe that the overall system
accuracy is better than it actually is.

Figure 1.1. A test system using manual control requires a skilled operator.

Repeatability is a concern with
manual test systems. There are many
opportunities for operator error to
go unnoticed. These errors creep

in when the operator is attaching
cables, setting instruments, recording
results, and even when transferring
the results to other documents.

Even with these limitations, the
manual approach can be useful. With
due diligence while conducting the
test and techniques such as using the
same cables to increase repeatability,
the manual approach can produce
reasonably reliable results. Another
advantage of manual control is the
ease in which the test system can be
reconfigured or the instruments used
for other projects.

Additionally, a skilled engineer
conducting the tests is constantly
comparing the results against
expectations, thereby providing a
form of continuous verification of the
test system. An incorrectly operating
fully automated test system could
continue to test for hours, days, or
even weeks without detecting the
problem, resulting in the shipment of
incorrectly tested products.

Use manual control when

¢ a small number of devices are
being tested

¢ cost of automation outweighs
benefits

* speed of test is not critical

¢ test requirements may change
regularly

* the delay to create an automated
system is unacceptable

» skilled operators are available

* the instruments need to be easily
disassembled for use elsewhere.

www.agilent.com/find/open
13

Semi-automated control

Semi-automated control is a common
type of control approach used for
test systems, and is useful in R&D,
design validation, and manufacturing
test (Figure 1.2). Test systems using
this control approach have manual
portions for flexibility where it is
needed and automation where it
makes sense. Those sections of the
test system that are expected to
change often or would be too expen-
sive to automate can be manual.
Those sections that will not change
or would benefit from automatic data
recording can be automated.

A semi-automated test system might
require the operator to manually
connect the DUT, provide instruc-
tions to the operator for the proce-
dural steps, and automatically record
the results. For example, a semi-
automated system might have an
oscilloscope and an RF source that
are under computer control, with a
power supply under manual control.
The engineer would vary the voltage
to the DUT via the power supply, run
a set of tests at this voltage level, and
then manually change the voltage
and run another set of tests.

Figure 1.2. A test system using semi-automated control often uses a
PC for the operator interface.

14 1. Introduction to Test-System Design

Semi-automated control is often
much faster than manual control

and produces a more reliable and
repeatable result. This method

of control can take advantage of
simplified software development with
Agilent’s VEE or Visual Studio .NET
for quickly creating the required
automation.

The most common type of test equip-
ment includes a fully functional front
panel and a computer interface that
allows both manual and automated
use. This is a major benefit, even
when automating, as you can always
go back to a manual approach if you
need to measure other parameters,
troubleshoot the system, or conduct
an experiment. These standalone
instruments are beneficial when
developing a fully automated test
system for manufacturing as it is
common to start with a semi-auto-
mated system and then increase the
level of automation as experience
and production volume increases.

Use semi-automated control when

e automation benefits will outweigh
added costs

test volume does not require full
automation

* some flexibility in the test system
is required

reasonably repeatable results are
required

skilled operators are available or
close by

* a move to full automation is antici-
pated but not yet required

Automated control

Fully automated test systems are the
domain of complex design validation
testing or the manufacturing test
environment (Figure 1.3); they are
rarely used in R&D. All of the instru-
ments, signal switching, and connec-
tions to the DUT are controlled by
computer. In some automated test
systems, an operator may be required
to manually install the DUT into a
test fixture as a single action, but
others have an automated handler to
insert and remove the DUT from the
test fixture.

Full automation is the most expen-
sive control method in terms of
software development time, but it
also results in the highest throughput
and most repeatable and reliable
measurements by nearly removing
the human-error factor from the

test. The skill level required of the
operator is usually much reduced.

Full system calibration and diagnos-
tics are easier to implement in an
automated system where software
can reconfigure the test system to
allow it to test and calibrate itself
against an external traceable refer-
ence. Full system calibration can
even calibrate the cables and connec-
tions instead of just the individual
instruments.

Proper diagnostics designed into an
automated test system can test most
of the system. You can create a diag-
nostic device that plugs into the DUT
fixture. This device will connect test
stimulus signals to test measurement
instruments. Diagnostic software you
create will then configure the test
system to verify operation through
the same switches, cables, and
connectors that are used for testing.

There must be compelling reasons to
justify an automated test system. Not
only is the initial development cost
high, but any changes or upgrades
to an automated system can be

very expensive. The compelling
reason for the expense is usually the
high-volume requirements of manu-
facturing test, but there are times
during R&D and design validation
when the required accuracy is very
high or the test is very complex,
making it necessary to automate

the test to remove potential human
errors or speed up the test process.

Use fully automated control when

¢ high-volume manufacturing
requires automation

precision or repeatable tests are
required to test the DUT

¢ reducing test time is critical

test requirements are known and
stable

* cost per test outweighs test-system

development cost
time is available for development
skilled operators are not available

accuracy or complexity require-
ments dictate automation

Figure 1.3. A fully automated test system requires minimal

operator interaction.

15

Planning for the future

When making test-system design
decisions, you should keep future
needs in mind. Upgrades are a fact
of life for a test system. They can be
very expensive and time consuming
but are often unavoidable. Naturally,
any upgrades must justify the expense
and effort required. Reasons for
upgrades include

¢ accommodate changes in design
of the DUT

conduct additional tests

obtain higher accuracy

obtain higher throughput

eliminate redundant tests

rearrange the test sequence to
detect failures earlier

improve analysis

automate more of the test

decrease the skill level required
to operate the test system

replace obsolete equipment

* change reporting requirements

upgrade the operating system

conform to new standards

add newly developed models

repeatability is important

16 1. Introduction to Test-System Design

A few moments considering the
future can have a significant impact
on future options. For example, when
selecting instruments for a manual
system, there is usually very little
added cost to select instruments
that have computer interfaces. You
may not need the interface today,
but computer control is not possible
without it (and could be costly,
difficult, or even impossible to add
at a later date).

Using open standards will increase
the likelihood that test system
components will be useable in

the future. Proprietary interfaces
have a habit of disappearing or

not supplying the drivers you need
for future software options. Using
proprietary measurements made by
specific equipment in a test system
from manufacturers that do not
supply future upgrade paths could
make an entire test system obsolete
if that exact instrument is no longer
available.

Consider where the instrument
architecture is in its lifecycle. For
instance, is it a cardcage design
based on a PC backplane that will
soon be replaced? Are vendors
designing new products to this archi-
tecture (or to its replacement)?

Following proper software design
techniques resulting in well-written
software that is easily understood,
maintained, and modified is an
obvious requirement for future
upgrades. Good documentation is
also critical to the future of a test
system: Chances are you will not be
the one that is tasked with future
modifications.

Conclusion

Although test-system development is
a complex task that can include many
aspects of electronic and mechanical
design, following a systematic
approach and partnering with quality
test equipment manufacturers will
enable you to enhance your success
while lowering the cost and time it
takes to create the test system.

Case study: testing power
supplies

This case study is an example of how
a test system can evolve from R&D to
design validation to manufacturing.
Many of the same instruments are
used in all three areas with the major
difference being the type of control
used. This is a common practice as
the knowledge gained in each phase
of product development is trans-
ferred to the next.

Manual control

When developing a product such as
a power supply, the R&D engineer
will create a test system as required
to explore options and verify results.
The test bench in Figure 1.1 is
typical of such use. Many instru-
ments are within reach and it is easy
to rearrange them as needed. All

of the connections to the DUT are
made manually and each instrument
is manually operated. This is an
example of a test system with manual
control.

The flexibility to quickly move from
measurement to insight to next
measurement, whatever that next
measurement might be, is obvious.
Standalone test instruments readily
lend themselves to this usage model.
The high level of skill required of the
operator is also important. There is
significant opportunity for error and
confusion with a manually controlled
system. R&D engineers are in their
element at such a bench, but it falls
short on reliability and repeatability
when compared to other control
methods.

The block diagram in Figure 1.4
shows the interconnection of the
instruments for some of the tests
used during the R&D phase of power
supply development. Some of the
standard tests measure output-
voltage accuracy, output noise, load
regulation, line regulation and output
programming speed.

The test system diagrammed in
Figure 1.4 is just one example of

a manual setup for testing some
aspects of the design. Other R&D
engineers would have other manual
setups on their benches to test for
other parameters. In this case, the
total R&D manual test system is
actually distributed throughout the
benches of the entire design team.

More-specialized tests will also be
conducted at this stage. Loop gain
(Bode plot) is used to evaluate the
stability of the control loops used

to regulate the output voltage and
current of the power supply. Load
transient response is measured by
applying a load-current step change
and monitoring the output voltage on
the scope, also giving insight into the
stability of the control loops. Voltage
and current stress on the compo-
nents are also measured so power
can be calculated to ensure that no
parts are over stressed. The tempera-
ture of individual components may
also be measured.

As these measurements are made,
the test system is rearranged, the
cables are attached as required, the
instruments are manually controlled,
and the results are noted. Often, the
exact configuration is not recorded,
making an exact repeat of the
measurement difficult. The cable
connections are often made with
probes and clip leads in a manner
that is quick but not reliable. Even
so, the advantages to a skilled
operator far outweigh the problems
associated with manually controlling
a test bench.

Semi-automated control

The design is “complete.” Now it
needs validation, so the test require-
ments are somewhat different. In
this case, the same instruments

are used, but a computer is added
for semi-automated control. The
block diagram of Figure 1.4 remains
the same, but now a computer

is connected to some of the
instruments.

Many of the same measurements
are made during design validation

as were made during R&D. But now,
more of them can be made to fully
validate the design. For example,

the output accuracy of the power
supply under test can be checked

at a variety of operating conditions.
The input voltage, load current, and
even the ambient temperature can be
varied to ensure proper regulation
of the output voltage and that the
output noise is within requirements.
The same tests can be conducted on
multiple prototypes to ensure that
the design is consistent across units.
Further, these tests can be completed
much faster and include automated
data recording, enabling statistical
analysis.

The repeatability and reliability of
semi-automated control along with
automated data gathering are a
significant enhancement to manual
control. By selecting instruments
that include computer interfaces,
automating portions of the test
system is much easier. In many cases,
the automation is merely a matter
of having a computer perform the
commands and read the results that
were done by an operator.

Figure 1.4. Block diagram of a manually controlled test system used for R&D

Voltmeter Oscilloscope

- n 4+ In

I_ ~

DUT
DC/DC Power
DC Power Current " Source " DC Electronic
Supply Output Shunt Input Output Input Load
: 'v\/\’ — mela"s‘t?[rgr%lent -
7 point

T n t " n t “n t
Voltmeter Voltmeter Voltmeter

17

Automated control

The move to a fully automated test
system may require additional instru-
ments. The computer now controls
all of the instruments as well as the
reconfiguration of the interconnec-
tions for various tests. The digital
multimeter, scope, and loads are still
used, but now switches are employed
to connect the DUT to the instru-
ments. As the tests are performed,
the computer uses the switches as
required.

The block diagram in Figure 1.5
includes connections to the DUT
and measurements that test the
power supply in the manufacturing
environment. The number of tests
performed may approach those
conducted during R&D and design
validation but they are normally not
as thorough. Manufacturing tests are
often performed only at one oper-
ating point that is considered to be a
worst-case condition. This maximizes
the amount of information gained
about the DUT in the minimum time.

Figure 1.5. Block diagram of a fully automated test system.

Fixture

MUX
Switch DC/DC
matrix power
source
(DUT)
(DMM j
(Function g ator)
(Oscilloscope)
(AC source)
| o0
DC source O/ o
oo
DC loads

18 1. Introduction to Test-System Design

Power switch

The speed, repeatability, and reli-
ability of the fully automated system
can be significantly better than that
of other test system control methods.
Also, the skill level of the operator
can be less. But the time and expense
to create the system and make any
changes usually makes automated
test systems only feasible for manu-
facturing uses.

2. Computer 1/0 Considerations

Introduction

Whether you plan to use your
rack-and-stack test system for R&D,
design validation or manufacturing,
you are likely to program and control
your system with a PC. For decades,
the IEEE-488 bus, commonly known
as the general-purpose instrumenta-
tion bus (GPIB), has been the stan-
dard interface for connecting test
instruments to computers and for
providing programmable instrument
control. GPIB is still a common and
useful technology, but now other I/O0
options are available. This chapter
explores the various I/0 options and
helps you decide which interfaces
make the most sense for your test
system.

Proprietary 1/0 versus
industry-standard 1/0

Most of today’s PCs offer built-in
Ethernet-based local area network
(LAN)and Universal Serial Bus
(USB)connections. These industry-
standard PC I/0 technologies are
much faster than previous PC I/O
technologies such as RS-232, and
therefore are much more suitable for
automating and controlling test-and-
measurement instruments. IEEE
1394, or FireWire interfaces, while
not as ubiquitous as LAN and USB
ports on today’s computers, also are
readily available.

Using these industry-standard inter-
faces for communicating with your
test instruments can save you time
and money and reduce headaches

as you build your test system. Some
benefits of using industry-standard
I/O are immediate and obvious. For
example, with USB, you don’t have
the additional expense of purchasing
an I/0 card, and you don’t have to
dismantle your PC to install the card.
The LXI standard has been adopted
by most instrumentation companies,
facilitating the widespread use of
LAN-based instruments.

There are other less obvious
advantages to industry-standard

I/0 as well. Because the computer
industry employs thousands of
engineers who work on improving the
throughput rate and data integrity
of these interfaces, they are likely

to continue to improve more rapidly
than proprietary interfaces. Using
industry-standard I/0 also makes it
easy to interchange instruments in
your system with instruments from a
variety of manufacturers.

Proprietary interface cards, such as
MXI and MXI-Express from National
Instruments are expensive, with
typical price tags starting about
US$1,000. You have to open up your
PC housing to install them. And if
you don’t have an open expansion
slot, you need to consider replacing
your computer.

Because of the inherent advantages
of industry-standard I/0 and
customer demand for it, instrument
manufacturers are now providing
LAN and USB interfaces to their test
equipment. For example, the Agilent
33220A arbitrary waveform/function
generator, introduced in early 2003,
includes LAN, USB and GPIB inter-
faces. With the widespread adoption
of LXI, most new instruments are
likely to have a LAN interface.

If you want to use your existing GPIB
instruments in a rack-and-stack test
system, you don’t necessarily need to
use GPIB as your interface. Agilent
also offers converters—USB/GPIB
and LAN/GPIB—that allow you

to use your GPIB-equipped test
instruments with USB- or LAN-
equipped PCs, eliminating the need
to install a GPIB card in your PC.
National Instruments also offers a
FireWire/ GPIB converter. The next
chapter looks at GPIB and the two
main industry-standard interfaces,
LAN and USB, and explores the
applications where each is most
appropriate. (FireWire interfaces are
used primarily for VXI test systems.
You will find more information

about VXI in Chapter 5, Choosing
your Test-System Architecture and
Instrumentation.

GPIB interfaces

GPIB is the most common interface
for programmable test-and-measure-
ment equipment. It is still one of the
best choices if you want to maximize
throughput for a variety of block
sizes. GPIB is a parallel bus that
includes control lines, handshake
lines, and 8 bi-directional data
lines—specifically designed for instru-
ment communications and control.
GPIB supports up to 14 devices that
can be connected to your PC. You
can use either a star or a daisy-chain
configuration for connecting multiple
instruments (see Figure 2.1), but
cable length is limited to 2 meters
(times the number of devices) up to a
maximum length of 20 meters.

You can achieve data transfer rates of
more than 500 KB/s on a GPIB bus if
you limit bus cable length to 1 meter
(times the total number of devices),
up to a maximum length of 15

meters. Longer cable lengths reduce
the maximum data transfer rate to
less than 500 KB/s.

When you use GPIB, configuring the
instrument I/0 bus is a relatively
easy task. However, each instrument
on the bus needs to have a unique
address. This requirement means
you may have to manually change
an instrument’s address when you
configure your system.

GPIB has other drawbacks, too. GPIB
cables and connectors are rather
large, bulky, and relatively expensive.
And because GPIB isn’t a standard
built-in PC interface, you have to
open your PC housing and install an
interface card in one of your PC’s
expansion slots.

20 2. Computer /0 Considerations

To communicate with instruments
over GPIB, you need to install an
I/0 software package. Plug and
Play drivers, IVI-COM drivers, and
VISA (Virtual Instrument Software
Architecture) are examples. These
packages support popular languages
such as C and C++, Microsoft
Visual Basic 6.0, Visual Basic .NET,
MATLAB, Agilent VEE, LabVIEW,
and others.

USB interfaces

USB was originally intended as

an alternative to the RS-232 serial
interface and the Centronics parallel
interface, an older standard I/O
interface for connecting printers and
certain other devices to computers.
USB is suitable for a range of
computer peripherals, from slow
devices, such as mice and keyboards,
to high-performance devices such

as scanners, printers, and cameras.
Now, USB is finding its way into
test-and-measurement instrumenta-
tion, too.

USB is a serial interface bus that
includes two power wires and a
twisted pair to carry data. USB is
capable of data transfer rates of
about 12 Mb/s for v1.1, and up to
480 Mb/s for v2.0. In addition, v2.0
is fully backward-compatible with
v1.1. The main difference is the data
transfer rate.

USB is capable of supporting up to
127 devices on a given interface.

If you use a GPIB-based system,

you must ensure that instrument
addresses are unique, but USB
provides this function automatically.
When USB devices are manufactured,
they are given unique identifiers
based on the manufacturer, the
instrument serial number, and the
product number. When the device

is powered up and connected to a
controller, the controller detects

its presence automatically, and if
the host-side software drivers are

loaded, the instrument will be ready
to communicate on the bus. USB
devices also are “hot swappable,”
which means you don’t have to shut
down your PC to plug in or unplug an
instrument.

With USB, the computer schedules
and initiates all transactions. If you
are using a Windows NT® operating
system, you will find that it does not
support USB connections.

Figure 2.1. You can configure a GPIB bus in
either a daisy-chain or star topology, or you can
intermix these two configurations.

Instrument 2

Instrument 1

Instrument n
Daisy chain bus configuration

Instrument 1 Instrument 2

Instrument n

Star bus configuration

Configuring USB systems

USB cables and connectors are
considerably smaller than their GPIB
counterparts. However, device-
interconnect configurations for USB
are somewhat different from those
usually seen in GPIB-based systems.
Most USB instruments are equipped
with a single USB connector, so you
cannot daisy-chain multiple devices
together. Instead, you need to use a
hub to connect the devices to your
computer, as shown in Figure 2.2.
Not all test-and-measurement USB
drivers are designed to work with
hubs, so it is a good idea to check
with the manufacturer.

Hubs provide expansion capability
for USB, permitting multiple devices
to be connected to a single USB port.
These hubs are transparent to a
controller, and you can cascade them
up to five deep. Using hubs in your
system offers several advantages. For
example, many USB hubs include
LED status lights that indicate which
port is connected. Also, a hardware
failure at the interface to one
instrument, such as a shorted line, is
unlikely to cause an entire bus to fail.
This makes troubleshooting an I/0
interface fault in a large system with
many instruments a much easier
task than having to disconnect each
device in turn, as required in a GPIB-
based system.

Making USB connections

Connecting USB instruments to a

PC controller is also a simple task.
USB is especially useful with laptops,
since typically they do not have the
PCI slots required to install GPIB PCI
cards. Virtually every PC produced
within the last few years has several
USB ports already built in.

As with GPIB, communications

with instruments via USB requires
the installation of an I/O software
package. Plug and Play drivers,
IVI-COM drivers, VISA, and IntuiLink
software—supporting C/C++, Visual
Basic 6.0 and Visual Basic.NET—are
available with USB support.

LAN interfaces

You also can connect your test-and-
measurement instruments to a PC
via a LAN interface. Ethernet LANs
are almost universally available at
industrial and commercial sites, and
most PCs found in these facilities are
already connected to a LAN. With
the introduction of the LXI standard,
Ethernet-based LAN interfaces for
test equipment are becoming even
more common than USB connections.
Ethernet-based LANs commonly
support data rates of 100 Mb/s to
1Gb/s.

USB and LAN interfaces share

a number of features. They both
operate in serial mode, and both
use relatively small and inexpensive
cables and connectors (especially
when you compare the connector
costs to those of GPIB).

You will want an Ethernet switch
or router to interconnect multiple
LAN instruments in a test system.
Ethernet switches are readily
available today—and are relatively
inexpensive. Most provide network
status, or activity indication with a
series of LEDs.

Ethernet-based LAN devices typically
need to be configured to operate
properly on a network. However,
instruments that support Dynamic
Host Configuration Protocol (DHCP)
provide the capability for test
instruments to configure themselves
automatically to operate on a
network—if these services are avail-
able on the network. To simplify the
configuration task, LXI instruments
are required to support DHCP.

Figure 2.2. USB configurations with a single
device and with multiple devices connected
through a huband with multiple devices
connected through a hub

—_——— -

Instrument

Simply device configuration

—_———

[

I

I

I

I

I HUB

I 1 1|1

—_— |

| Instrument 1 Instrument 2 HUB

| T 1
I I o
| - -
| Multiple device Instrument 3

(

configuration with hubs

21

Connection methods

You can connect LAN-enabled instru-
ments several different ways. They
may be connected directly to a site
LAN (a workgroup LAN, intranet,

or enterprise LAN), or they may be
connected to a private LAN.

In private-LAN configurations, your
PC and your test instruments are
connected to each other via a LAN,
but they are not connected to a site
LAN. The simplest private-LAN
configuration consists of a controller
and only one instrument. See the first
illustration in Figure 2.3. You also
can connect multiple instruments

in a private LAN, as shown in the
second illustration in Figure 2.3.

If you plan to use your site LAN,
rather than a private LAN, you
need to be aware of two potential
drawbacks:

1. Traffic on your site LAN can slow
down your measurements.

2. Ifyou are using a LAN interface
for controlling your test system,
it is possible that a faulty instru-
ment could damage or disrupt
the network, particularly when
the instrument is turned on
and tested for the first time.
Controlling your test instruments
via a private LAN is the safest
approach, since it limits the range
of potential disruption and access
and maximizes performance.

For all setups, you can connect
instruments to the LAN either with
a conventional LAN cable or through
a wireless adapter. Wireless routers
and hubs also are available, as are
wireless USB-to-LAN interfaces. See
Application Note 1909-3, Creating
a Wireless LAN Connection to a
Measurement System.

22 2. Computer 1/0 Considerations

Remote access

A site LAN has the potential for
permitting any controller on the LAN
to access instrumentation—either
intentionally or unintentionally. If
the site LAN can be accessed from
physical locations outside of your
facility, then others can access your
instrumentation. This open access
can be a valuable asset because it lets
you remotely control instruments
and systems almost as easily as if
they were next door. You can use
remote access capability to diagnose
system and instrument faults from
faraway locations. Multiple engineers
can share the expensive test instru-
ments and systems from remote
locations.

However, this open access also can be
a disadvantage. For example, if the
site LAN is connected to the outside
world to provide Internet access, you
face a serious risk of exposure to
undesired system accesses. Firewall
software and/or using a router which
requires specific device addressing
rather than a switch or hub can
provide protection.

If you want remote access to your
test equipment, but security and
controlled access are a system
requirement, then you need a lockout
feature. Some instruments, such as
the 33220A function/arbitrary wave-
form generator, provide this feature
via an Allow List. An Allow List is

a list of remote LAN addresses that
are permitted to communicate with
the instrument. Any controller that
attempts to access an instrument
whose address is not on the Allow
List is rejected. This feature provides
a level of system security for those
instances where your system is

connected to a site LAN and is at risk

for inadvertent access.

You can also use a virtual private
network (VPN) for secure, remote
access.

Figure 2.3. Single and multiple instrument configurations

can be connected to private LANs and

site LANs.

—_——— -

Instrument

Simply connected private LAN

[

I

| Crossover cable
I E

I

(

—_——— -

To site LAN

te] [o5

Instrument

Simply connected site LAN

Switch

Instrument 1

Multiple instrument private LAN

I
I
I
I
I
I
I I 1
I
I
I
(

Instrument 2

ROUTER

To site LAN

—F]

Instrument 1

Multiple instrument site LAN

Instrument 2

Instrument communication and
operation over LAN

Instrument communication over

an Ethernet-based LAN requires

a software driver package if I/0 is
to be performed via Plug-and-Play,
IVI-COM or VISA. It’s also possible
to use the TCP/IP’s sockets or telnet
to perform instrument I/0 directly
without a host-side driver. In fact,
I/O operations using sockets provide
the fastest data transfer rates, since
the host-side driver is bypassed.

You can operate some LAN-enabled
test instruments via a virtual front
panel that appears on your PC
screen. Typically, the display looks
and acts like the actual instrument
itself (see Figure 2.4), and you use
your mouse to actuate buttons as

if you were actually pushing front-
panel buttons. The virtual instrument
display mimics that of the actual
instrument that may be thousands of
miles away. Agilent LXI instruments
allow both monitoring and control of
instruments from your web browser.

Which 1/0 interface
should you use?

To decide which I/0 interface or
interfaces you use in your test
system, you will need to consider
many factors. These include data
transfer rates and block sizes, and
costs for cables, routers, hubs, and
PC I/0O cards. Other factors include
I/O driver availability, and program-
ming requirements, as well as the
need for possible remote system
access.

Keep in mind that you do not have

to choose a single I/O interface.
Systems incorporating multiple
interfaces are particularly useful if
you have a mixture of older GPIB
instruments and newer instruments
with other interfaces built in. Today’s
advanced software tools that include
VISA technology eliminate the need
to talk to different kinds of I/0 in
different ways. A minor change to

a single line of code is typically all
that is required. However, do not mix
interfaces on a single instrument—the
input and output must be on a single
interface—and make sure your soft-
ware drivers know which instrument
is using which interface.

Figure 2.4. Virtual front panel of the 33220A multifunction switch/measure unit

Im 7” Tooks _Hsb
| ek - 5 - @ [) A | Qsewch (ijPavortes Prismry | BN 5 [

| Address [&] petpiir169.254.2.200

o Page

R TR DTS 20 MHz Function/Arbitrary Waveform Generator

Update Display

Ee@e

Gating factors on data rates

The data rates of a test system are
determined by the slowest device/
firmware/software in the system.

For example:

1. A high-speed instrument with
integrated LAN controlled with an
older computer will be limited by
the computer processor speed and
possibly memory depth.

2. A USB2 interconnect will operate
at a USB1 rate if the instrument,
USB hub and computer do not also
support USB2.

3. An Instrument with a data transfer
rate of 33K bytes/second will not
transfer data any faster with USB,
LAN or a computer that is able to
transfer data at 1M bytes/second

To see an example system that
incorporates multiple interfaces
(RS-232, FireWire, USB, GPIB and
LAN), see Chapter 5, Choosing Your
Test-System Hardware Architecture
and Instrumentation.

Real data rates

You will notice that individual I/O
bus specifications for data transfer
rates usually give only the theo-
retical maximum transfer rate. The
actual data transfer rate that can
be achieved for any given system
depends on a number of factors.
These factors include PC micropro-
cessor speed, PC software and driver
overhead, I/O card hardware, and
instrument-specific hardware and
firmware.

www.agilent.com/find/open
23

These variables make it difficult

to predict the actual data transfer
rate that might be expected for any
given system configuration. Table
2.1 shows a relative comparison of
data transfer rates for several data
block sizes among GPIB, USB v1.1,
USB v2.0, and LAN interfaces. These
data were compiled using the Agilent
Model 33220A function/arbitrary
waveform generator and a Hewlett-
Packard Kayak PC with an 800 MHz
processor running on a Windows XP
operating system.

For small data-block sizes of a few
hundred bytes, there is no appre-
ciable difference in bus speed, but
the higher-performance buses (USB
v2.0 and LAN) demonstrate a marked
improvement in the time required to
transfer large data blocks.

The differences in data transfer rates
between small and large data blocks
for any given interface are largely
due to variations in the latency, or
software overhead, required for each
of the interfaces prior to the start of
the actual data transfer.

If you’re looking for high throughput
in a test system, don’t be swayed

by the perception that high-speed
interfaces will always get you there.
In most test systems, the use model
is one of “Close a channel; measure a
point,” then “Close another channel,
measure another point.” In this case,
block transfer rate is meaningless.

The time to close the channel and
make the measurement dominates
the total time. GPIB’s strong perfor-
mance in this use model is one of the
reasons it has lasted so long as an
interface.

For a detailed look at data transfer
rates of two different block sizes
over the various interfaces, see
Application Note 1475-1, Modern
Connectivity—Using USB and LAN
Converters. This application note
compares the Agilent 82350B GPIB
PC card, the 82357A USB/GPIB
converter, and the E5810A LAN/
GPIB gateway in terms of controller
and operating system requirements,
set-up steps, data transfer rates,
allowable distances from instruments
to the PC, etc. These details will help
you choose the best interconnection
method for your application. One of
the benefits of having an instrument
that supports multiple interfaces

is the ability to easily compare the
actual data transfer rate for each of
the I/0 interfaces in a given applica-
tion. This permits you to select the
interface that offers the optimum
performance.

If the application program’s

I/0 calls are written with a driver
interface that provides a common

set of programming commands
independent of the interface, such as
Agilent’s VISACom, then it becomes
a simple matter to direct the I/0 calls
to any of the three interfaces.

Table 2.1. Relative 1/0 times from a PC to an Agilent 33220A (data taken with a 1-meter cable
on an HP Kayak XU800 with an 800 MHz processor running Windows XP)

Interface Function change Frequency change 4Karb 64K arb
LAN (socket) 100 ms 3 ms 8 ms 110 ms
USB 1.1 100 ms 4 ms 10 ms 185 ms
USB 2.0 99 ms 3ms 8ms 100 ms
GPIB 99 ms 2 ms 20 ms 340 ms

24 2. Computer 1/0 Considerations

Comparing costs

Today, many companies are looking
for ways to lower the cost of test.

If this is true of your organization,
implementation cost will be an
important consideration in selecting
an I/0 interface for your test system.

New PCs typically have a LAN and
several USB ports built in, but GPIB
interfaces usually require a card that
you must purchase separately. GPIB
cards typically cost about US$500
and additional USB or LAN cards
usually sell for US$10 to US$50.

Also, if you plan to use USB or

LAN interfaces to connect multiple
instruments in your system, you

will need switches or hubs. These
hubs can cost from US$25 to US$200
each, depending on features and the
number of ports they support.

You also need to consider the cost

of the cables for your test system.
GPIB cables are relatively expensive,
ranging in price from US$60 to
US$150 each, depending on their
length. USB cables, on the other
hand, range from US$8 to US$30.
LAN cables are usually the least
expensive, typically costing less than
US$10. Some can be found for as low
as US$3.

You can make useful cost compari-
sons by assuming that all test
instruments are able to support any
of the three interfaces and computing
the interface cost for your proposed
test system. Today, few test instru-
ments actually do support all three,
since the industry is just beginning to
provide instruments equipped with
multiple computer-industry-standard
interfaces. However, the I/0 inter-
face converters mentioned earlier
permit GPIB-only instruments to be
connected to USB- and LAN-based
interfaces. For example, the Agilent
82357B USB/GPIB interface enables
your PC to communicate with GPIB
devices via the PC’s USB port.

Similarly, the Agilent E5810 LAN/
GPIB gateway provides a means to
connect GPIB devices to a LAN (see
Figure 2.5.) These converters can
save you the cost of replacing your
existing GPIB test instruments if you
decide you want to use industry-stan-
dard I/0O. However, these converters
are appropriate only for applications
where measurement speed is not
critical, as they do slow the data
transfer rate.

Let’s look at an example of a test
system designed to test the Agilent
33220A function/arbitrary waveform
generator. The test system consists
of a controller, a local printer, seven
rack-and-stack instruments, a fully
loaded 13-slot VXI mainframe, and
support for testing three 33220A
waveform generators.

As Table 2.2 shows, GPIB is the most
expensive scheme to implement.
Even with the added costs of USB
and LAN hubs, their reduced cable
costs and higher overall speed perfor-
mance makes them more attractive
alternatives.

From a systems perspective, hubs
and switches also offer some I/O
interface operational feedback that is
lacking with GPIB systems. Also, the
much smaller USB and LAN cables
and connectors take up much less
rack space, making system cabling
easier. They also weigh less.

Figure 2.5. The Agilent E5810A LAN/GPIB Gateway and the 82357B USB/GPIB Converter.

Ease of implementation

USB is the simplest I/0 to imple-
ment, and GPIB is also relatively
straightforward, as long as you don’t
mind the hassle of opening your PC
and installing an interface card. Since
LAN has become common in home
broadband applications, configura-
tion is becoming much easier, but
remains the most difficult of the three
interfaces to implement. However, for
many system developers, the advan-
tages of LAN far outweigh the added
development time required. Evaluate
your own situation to decide if that is
true for you.

Table 2.2. Typical costs for LAN, GPIB and USB interfaces

Interface Single instrument 12-instrument system

LAN PCl card + cable $30 PCI card + cables + 16-port switch $300
USB PCl card + cable $60 PCl card + cables + 2 hubs $225
GPIB PCl card + cable ~ $600 PCl card + cables $1600

ES810A

gilent Technologies
LAN/ GPIB Gataway

LAN GPIB RS232 Fault Frsast

www.agilent.com/find/open
25

Conclusion

With the new generation of test
instruments offering a choice of
interfaces, you need to decide which
interface is best suited for your

test system. Comparing costs, data
transfer rates and ease of imple-
mentation will help you choose the
interface most appropriate for your
application (see Table 2.3). For R&D
applications, where the number of
instruments in a system is usually
small and a quick and easy interface
set-up is desired, USB is usually the
best choice.

For design verification and manufac-
turing, USB and Ethernet-based LAN
are good choices, although LAN is
typically the better of the two alter-
natives for larger systems because

of its data-throughput performance,
cost, remote access, and ease of
system assembly.

The added flexibility, remote system
access and control, performance on a
par with USB, captive cable connec-
tors (which aren’t found on USB),
and the capability for wireless opera-
tion offered by the LAN approach can
make LAN the most attractive choice
for many systems applications.

Table 2.3. Advantages and disadvantages of GPIB, USB, and LAN interfaces

Interface Advantages Disadvantages
LAN * Good data-throughput performance * Requires LAN knowledge to
* Low cost set up
* Remote access makes it easy to
control system from remote location
USB * Quick, easy setup * Does not work with Windows
* Low cost NT
* Good data-throughput performance
GPIB * Ubiquitous interface on test * PC expansion slot required
Instruments * Must open PC housing to install
» Maximizes throughput for all block card
sizes

* Relatively expensive

* Limited cable lengths permitted
between computer and
instruments

26 2. Computer /0 Considerations

Get help configuring your
170 interfaces

Configuring an interface to connect
your PC to an instrument or system
can be a daunting task for someone
who is not well versed in the
intricacies of PCs, 1/0 technologies,
and 1/0 inter-face configuration.

In the past, this was especially so
for LAN-based 1/0 that required a
system to be connected to a site
LAN. Fortunately, step-by-step guides
such as Agilent’s USB/LAN/GPIB
Interface Connectivity Guide are now
available to help you to configure
your I/0 interfaces. The Connectivity
Guide describes in detail how to
connect instruments to various
interfaces, and how to configure your
PC. It also includes programming
examples and interface trouble-
shooting tips. You can view the
guide at http://cp.literature.agilent.
com/ litweb/pdf/E2094-90009.pdf

3. Understanding Drivers and Direct 1/0

Introduction

This chapter answers common
questions about the use of drivers
and direct I/O to send commands
from a PC application to the test
instrument. It discusses how the
driver came about, what the different
software layers do in a system to
help the instrument communicate to
the PC, which drivers are compatible
with various software languages

and I/0 software, and references for
further study.

For the purposes of this discussion,
a driver is a piece of software
intended to simplify programming
and accelerate test-system develop-
ment by facilitating communication
with an instrument. In contrast,
direct 1I/0 involves embedding
specific instrument commands
(typically called SCPI commands) in
your test software and managing all
of the input/output communication
yourself.

Even if you have never programmed
an instrument in a test system, you
have used drivers on your PC. Digital
cameras, printers and other periph-
erals all require a driver to talk to a
PC. Moreover, if you've ever upgraded
a PC, you may have found that the
old printer driver no longer worked
with the new operating system, and
you need to go online to find a new
one. Or you may have found that the
printer didn’t work exactly the same
way it did under the old operating
system. Similar issues exist with test
and measurement equipment.

In a September 2001 survey, Test
& Measurement World published a
summary of engineers’ worst head-
aches. Instrument drivers topped
the list. Instrument manufacturers

and various trade groups have been
working on driver standards for
some time, in an attempt to alleviate
the frustrations of engineers who
need to automate measurements and
create test systems on a deadline.

As a result of these efforts, we might
expect finding and using appropriate
drivers to be dramatically easier,

but at the moment, complexities

and incompatibilities are still
troublesome.

This chapter answers common
questions about the use of drivers
and direct I/O to send commands
from a PC application to the test
instrument. It discusses how the
driver came about, what the different
software layers do in a system to
help the instrument communicate to
the PC, which drivers are compatible
with various software languages

and I/0 software, and references for
further study.

With new insight into these topics,
you should be able to choose, install
and use drivers more easily and
reduce the amount of time you

spend getting your instruments and
computer applications to talk to each
other.

History

The history of automated measure-
ments dates back to at least 1970,
when instruments began to be
connected via imaginative schemes
to devices resembling computers.
One popular I/0 format involved
connecting a large cable to the
instrument (Figure 3.1). Each line
on the cable represented a function
or range, and the line was simply
grounded at the proper time. The
device, say a voltmeter, would return
a value using binary coded decimal
(BCD) 1-2-4-8 format, or a quainter
1-2-2-4 format. Needless to say, the
programming syntax of instruments
at this time was anything but stan-
dardized. However, since everything
was hardwired, the process was
straightforward and immediate.

GPIB

In 1971, development began on

a standard hardware interface.

The idea was to be able to trigger
multiple instruments at once and still
allow both slow and fast instruments
to “talk” on the same bus without

Figure 3.1. Early instrument control utilized hard-wired commands.

Your computer

| Digital lines

64-pin connector,
data & control lines

| Direct interface

Your instrument

21

conflict. The first products to use
this bus were released in 1972. The
same year this new bus was dubbed
Hewlett-Packard Interface Bus (HP-
IB). In 1975, IEEE adopted it as a
standard with little modification, and
IEEE-488 was born. A variant of the
original interface is now popularly
known as General Purpose Interface
Bus (GPIB).

With GPIB and a desktop computer
(actually at the time it was called

a “desktop calculator”), the need
arose for a common communication
language. Limited processing power
in the ‘calculators’ demanded a
simple syntax, so ASCII commands
were chosen. A DMM might be sent
what was affectionately termed
“R2D2 code.” Here’s an example:

“F1R2T1"”

The command means “Go to the

dc volts Function, the 1 volt Range
and Trigger a reading.” Different
manufacturers had unique ways to
interpret the command strings, based
on their instruments’ capabilities.

If you had to replace a product with
one from another manufacturer, or
even a new-generation product from
the same manufacturer, it could
mean completely rewriting the entire
program. Later versions of IEEE 488
elevated the standard from being a
hardware-only standard to one that
also specified protocol.

SCPI

In 1989, seeing a need for more
clarity and interchangeability that
was available with simple ASCII,
Hewlett-Packard introduced a
programming language known as Test
& Measurement Systems Language
(TMSL). Within less than a year,

nine T&M manufacturers had met

28 3. Understanding Drivers and Direct 1/0

to generate a universal approach to
instrument control, using TMSL as
the basis. The outcome was Standard
Commands for Programmable
Instruments (SCPI) (Figure 3.2).

Today, SCPI is still the most-used
form of instrument control. In

SCPI, the instrument programming
syntax became much more robust
and predictable. SCPI defined a
strict hierarchy, and every command
was associated with a concomitant
response. These were defined for
source, sense and switch devices.
Here’s an example of SCPI code:

CONF:VOLT:DC 0.3,0.003

This command tells the instrument
to configure itself to get ready to read
a 0.3 volt dc signal with 3-millivolt
resolution. It should be obvious from
this statement that SCPI commands
require some intelligence on the
other end of the wire, as not every
voltmeter has a 0.3 V range. The
commands need to be parsed by

the voltmeter and this parsing adds
a small layer of delay time to the
system.

One advantage of SCPI is that the

list of commands typically covers

100 percent of the instrument’s
programmable functions, no matter
how arcane. For a friendly tutorial on
SCPI, go to ftp://ftp.agilent.com/pub/
mpusup/pc/iop/hpibtut/ib5_scp.html.

The 1/0 software: SICL and
VISA

Instrument commands aren’t the
whole story. It takes more “layers”

of software to communicate with

a computer. Before you send the
instrument a command, you need

to define the I/O path, route the
information through the proper I/O0
card, find out where the instrument
is on the bus and speak to the instru-
ment in the syntax of the I/0 you're
using. Assuming the GPIB I/O card in
the computer is at address 7 and the
DMM is at address 22 on the bus, the
simple BASIC command might be:

ASSIGN @Dvm to 722 !

Figure 3.2. Compared to “R2D2" code, SCPI commands standard-
ize programming and make life easier for the programmer. SCPI
commands can access virtually any programming function in the
instrument, but the parser does add small delays to the process.

PC application software

Direct1/0
(native
instrument
commands like
SCPI, ASCII)

\/

Your computer

1/0 software

4{ Physical interface i

l Physical interface [

GPIB

‘ SCPI parser

’ Your instrument

This tells the computer where to
send the command.

OUTPUT @Dvm;
“TRIG:SOURCE: INT” !

This sets the trigger source to
internal.

The above will work with a GPIB
interface, but if you try the same
thing using RS-232, the syntax is very
different. Switching between GPIB
and RS-232 would require rewriting
some code.

SICL

Standard Instrument Control
Library (SICL) I/O software was
subsequently developed to address
the challenges of updating or reusing
code. SICL was developed by HP to
make software as I/O-independent as
possible. It adds a layer on top of the
instrument code; this layer checks

to see what I/0 is used and alters
the syntax accordingly (Figure 3.3).
The code looks the same, regardless
of I/0 type. All you have to do is use
one line of code to declare the I/O
type at the beginning of the program.

Figure 3.3. SICL 1/0 software reduces a test engineer’s programming
burden by making it easier to change 170 types (USB, LAN, GPIB, USB,
VXI, RS-232, etc) without recoding the program. SICL adds a software

layer, which has a small effect on system speed.

SICL is not the only I/0 software
available today. AGILENT VISA,
NI-VISA and NI-488 and VISA-COM
(from Agilent) perform similar
functions. That’s a dizzying array of
choices, so for now let’s concentrate
on VISA. While SICL software was
created to communicate with Agilent
interfaces only, VISA was created to
work industry-wide and is now the
preferred programming interface.

VISA

In the late 1980’s, there was a

move to build standardized card
cage instruments. This movement
led to a software and hardware
standard known as VME Extensions
for Instrumentation (VXI). Based
on the VME standard, VXI made
special modifications for software,
shielding, triggering, power supplies
and analog performance. VXI was
adopted by hundreds of instrument
manufacturers who produced a
wide variety of plug-in cards. VXI's
interchangeability at the card level
brought about the need for common
I/0 software, similar to HP’s SICL,
but implemented as an industry-wide

standard. Largely derived from the
SICL library, the VISA syntax was
born.

Virtual Instrument Software
Architecture (VISA) was created

by the VXIplug&play Foundation

to standardize I/0 software across
physical interfaces and between
various vendors (Figure 3.4). In most
cases, test systems are not solely VXI,
but rather hybrids of VXI and “rack
and stack” architectures, so it was
not enough to create I/O software
exclusively for VXI. For that reason,
the VXIplug&play specifications
were extended to include traditional
standalone instruments as well as
both types' of VXI instruments.

1 VXI has two types of instruments,
distinguished mostly by their local
intelligence. “Message-based” cards”
can react to a high-level message,
and usually have on-card parsing.
“Register-based” cards are just what
the name implies: cards that have
directly programmable registers.
Message-based cards can do more, but
are inherently slower, since they must
interpret complex commands.

Figure 3.4. VISA is the most popular form of 1/0 software.
Drawing heavily on the work done for SICL, VISA was created to
serve multiple T&M suppliers and be a universal standard. VISA-

COM is a new variant of VISA.

PC application software

PC application software

Direct1/0
(native
instrument
commands like
SCPI, ASCII)

Your computer

\/

1/0 software (SICL)

|

4{ Physical interface

l Physical interface

l

|

Internal processor

’ Your instrument

Direct1/0
(native
instrument
commands like
SCPI, ASCII)

\/

Your computer

1/0 software
(VISA,SICL, VISA-COM)

4{ Physical interface i

‘ Physical interface ‘

Your instrument

Today’s two main suppliers of
VISA are Agilent Technologies and
National Instruments. (In 1999,

the engineers from HP Test &
Measurement who were involved in
instrumentation were split from HP
in the new venture now known as
Agilent Technologies.)

VISA 1I/0 software uses common
terminology and syntax to connect
to and control instruments. A VISA
library supports complete control
of instrument across the physical
interfaces GPIB, RS-232, USB, LAN
and VXI.

The VISA library provides the
capability of SICL, in a way that
conforms to industry standards.

A program written to work with
Agilent’s VISA library will work with
implementations of VISA from other
vendors. For those accustomed to
using SICL, Agilent’s implementation
of VISA is provided along with its
SICL libraries. (Since the introduc-
tion of VISA, programming based on
the SICL library has gradually been
phased out in favor of the industry-
standard VISA library.)

To program a new test system, the
test engineer installs the appropriate
I/0 library along with the application
programming language. VISA was
originally developed to be used with
C and C++, but can also be called
from any language that can call arbi-
trary Windows dynamic-link libraries
(DLLs), including Microsoft® Visual
Basic. Agilent provides header files
to facilitate the use of VISA in Visual
Basic.NET and C#. These can be
downloaded from http://www.agilent.
com/find/iolib.

30 3. Understanding Drivers and Direct 1/0

PC industry adds language
independence

As 1/0 development was proceeding
in the T&M industry, the PC industry
was making big strides in I/O-inde-
pendence and language-indepen-
dence. In 1994, Microsoft stated: “The
Component Object Model (COM) is

a software architecture that allows
components made by different soft-
ware vendors to be combined into a
variety of applications. COM defines
a standard for component interoper-
ability, is not dependent on any
particular programming language, is
available on multiple platforms, and
is extensible.”?

In February, 2001, Microsoft intro-
duced .NET, its 3rd generation of
component technology. .NET has
been applied to Microsoft’s inte-
grated development environment,
Visual Studio®.NET, as well as MS
Office, other applications, operating
systems and web services.

2 Dr. Dobb’s Journal, Microsoft Corp.
December, 1994.

The benefits of these PC software
technologies are compelling, but
should the test and measurement
industry embrace PC operating
systems?

Detractors point out the frequent
operating system upgrades in the PC
industry relative to T&M languages.
However, as Figure 3.5 indicates,
COM—which is integral to .NET
components—has been around longer
than most T&M standards. It seems
only logical to take advantage of the
investments Microsoft has made to
create this paradigm shift. With 3,000
engineers working for three years on
the first version of .NET, Microsoft’s
investment is twenty times that of
the leading T&M language. Similar
correlations apply to software. Visual
Basic has over 6,000,000 users, and
C/Visual C++ has 1,000,000 users
worldwide. This will result in an
unprecedented body of software

the average engineer will be able to
leverage.

Figure 3.5. PC Software Overtakes T&M Software in interchangeability. The millions of people us-
ing Visual Studio software will afford the engineer an unprecedented pool of available intellectual

property.
PC software
industry
s Microsoft:
> o
E = T&M . .NET components
£33 industry Microsoft:
@3 Mlicrosaft ActiveX
8 com IVI-COM
<5) components
5 visa VISA-COM (comp)
== SicL ® VXiplug&play e X
1980's 1990's 2000's 2010's i

VISA-COM

To incorporate this programming
language independence, Agilent
initiated a VISA-COM standard as a
companion to the VISA specification.
VISA-COM software makes VISA
services available in a language-inde-
pendent COM component architec-
ture. As a result, you are free to pick
from popular I/O configurations,

but now you also have the freedom
to choose from a list of software
languages, including C++, C# and
VB.NET.

When using Agilent VISA-COM, you
also need to install Agilent VISA.
Agilent 10 libraries are shipped along
with Agilent instruments, software
and I/O products.

Choosing and using
instrument drivers

By managing both the overall
communication between the PC
and the instrument as well as all
the details of command syntax and
instrument functionality, drivers
are clearly essential considerations
in test-system development (Figure
3.6). Without drivers, you're forced
to either memorize or look up the
direct I/O SCPI commands related
to the particular instrument being
programmed. If you intend to code
in a proprietary language, then you
need to know how those commands
fit. For simple applications, this
approach works well, but as applica-
tion complexity increases, using
direct I/O can become difficult and
time consuming. Programming a
direct communication path usually

requires you to know a specialized
computer programming language and
its programming environment and
to be familiar with proper command
sequences and interrelationships
between commands. You also need
to know how to load and configure
various I/0 libraries and parse
instrument responses that may be
in the form of binary data or screen
graphics. Whether you have these
competencies or not, when today’s
product design cycles are measured
in months rather than years, it
doesn’t make sense to spend several
of those months coding a new test
system, unless very high volume
production is the goal.

However, even will all these potential
disadvantages, there are times when
using direct I/0 can be a better
choice than using a driver; see “When
should I use a driver?” on page 33.

Figure 3.6. The driver is, among other things, a programming aid that works
between the PC application and the I/0 software. It can save enormous
amounts of development time and prevent coding mistakes.

PC application software

— T

Driver

\/

Your computer

1/0 software (VISA)

4| Physical interface i

| Physical interface |

GPIB, RS-232, etc.

Parser

Your instrument

31

Drivers come in many forms and
offer various levels of functionality.
A driver can be as simple as a list
that pops up when you hit the next
“dot” in Visual Basic, or it could be
as elaborate as a “panel driver” that
displays a virtual front panel on the
screen of your computer to help you
set up the instrument (Figures 3.7
and 3.8).

Driver coverage

A simple DMM may have only 25
commands, whereas a more complex
instrument may have hundreds.

You can imagine how expensive it

is to write an intelligent driver that
anticipates all the possible permuta-
tions of instrument setup, triggering,
sourcing and measurement. And
that’s why you’ll seldom see a driver
that covers every command in the
instrument.

Instrument manufacturers take their
best guess at the commands you are
likely to use and craft the driver
accordingly. A typical IVI driver (see
“IVI drivers”) covers about 40-60
percent of the instrument’s command
list. This may sound like a small
number, but consider this: Agilent
surveyed customers who used the
3852A Data Acquisition/Switch Unit,
a complex instrument with over

300 distinct commands. By poring
over customers’ code, we found they
rarely used more than 5 percent of
the available commands. This is an
extreme case, but it tells you that
40-60 percent coverage is a good
start. And even if a driver doesn’t
incorporate a particular command,
there are ways to send commands
directly yourself (Figure 3.9).

32 3. Understanding Drivers and Direct 1/0

Figure 3.7. Agilent’'s T&M Programmers Toolkit using a VXIplug&play WIN32 power supply driver in

T U TOOIITT T = WICFOSONT VISUANTASIC TE 1 [OETIEN] - FOTT Vo~ e
Be Edt Yew Boec Bud Debug Took ToMTookk Widew Heln
ool i RBe o . b Detug e R E
s HEAYN0.
0 % B ae =Z|AN%%NK.
Fgient Irekrumet Expl,., 1% Br F * Formiab® | b || Sohdion Explores - THTook,.. 1 %
HO &-H- o ke s =] [rm HloaE s e
= @ HOBW Master Configuanss 1 = hgilent,THFramevork.VesInterop, Design | T sobuton TMToobat 1 167 (1 proj's
= o nsRL Importe hgilent.THPramevork. InstowmentDe iver Interop == B mrookicne
W ¥ AsRL3 il Nefrronces
+- ¥ ASALY Clas=s Forml -l ARLHAA e
9 oo Tpherics Syaves. ¥indoun.Forma,Form +31 Aglert THFramens,
B AG 232208 [:10) <L) Aghert TMFramess
B HP 3NN [12) 21 Aglert. THFramews
= Daectl 81 =L Agherr T ramew
&Y HP 344ma 27 iy) Aglert. THFramews
& HP 349708 9] ey ~L3 Aaghert. TMFranme
&) HP 545450 -3) +C1 Aot THEramens
27 HPEXEAA 15 L3 Aglert. THFrsrmew
& HPEZEA4A 5] 1 o3 System
- ATE RO CTyped . Configuration. SO GpstemDsts
w Dunca) YAGEIGAXA") , Agilent.T AverInterop.’ €] 3
wpdges Gdun, Reaee () OO 1 x
mykgedadxn.| |_
[Clearvaitagerrotecion | || =
* Cose —Eaim
¢ * End o cnd o
1 ® Crint Y
Instrument Details —— T
P IRE utont & Crdinen X
eipion; 2
[e =
CrdRes Al
& CmdString)
b CresteCkpet =|
+ B oupue | T inde e ERT Proparties | @) Lrymsnnc i
In78 Col 21 than w

Figure 3.8. A tiny but interesting program, written in VEE. With its intuitive interface, VEE is the
fastest T&M graphical language to learn. Fill in the boxes, and the VEE panel driver generates code

for you. See http://www.agilent.com/find/vee.

_ RaalSiider =
1807 & = Function Ganerator

300 | cosine =] |
e Functian Casi
260 Frequency 1802
240 Amplitude 1
m | |
200 | 41 Frequency | Deofsat [] | Func j¢
180 - Phass Deg =] [0
180 Time Span 20m
140
120 — Num Points 256

100 N

Controls and displays visible

4

Tracet
Tracat

Figure 3.9. If you are using

a driver and need to access
instrument functions the

PC application software

driver doesn’t have, you can
send direct SCPI or ASCII
commands, or go through

the driver with pass-through
commands to control the
instrument directly. This
gives you the convenience of
drivers, with the 100 percent
coverage of direct 1/0. To
avoid command conflicts, this

technique requires in-depth ‘

knowledge on the part of the

programmer.

Direct1/0
(native instrument
commands) Your
computer
1/0 software (VISA) ‘
4{ Physical interface i
Commands sent over GPIB,
S RS-232, USB, LAN, VXI or

‘ Physical interface

‘ other physical interface

%

Your instrument

Driver evolution

There are three basic generations of
drivers: proprietary T&M drivers,
traditional T&M drivers and compo-
nent PC drivers (Figure 3.10). These
represent the past, present, and
future of driver technology. In the
past, instrument drivers were custom-
designed to function with a vendor’s
own application development envi-
ronment (ADE). A considerable body
of legacy application programs uses
these proprietary drivers, but for
new development, engineers today
have better choices.

When should | use a driver?

Use an instrument driver if

= A driver is available that works with
your development environment and
170 software, and supports the
majority of instrument features you
want to use.

» You want easy access to commonly
used instrument functions because
the instrument commands are
typically organized in a hierarchical
structure.

* You want to simplify the process of
developing and maintaining your code
over time, because there is a single
point of interface to update or change.

Software interchangeability is
important to you.

* You need to simplify maintaining the
system when instruments need to be
exchanged.

When you need to accelerate test
system design and deployment,
Agilent recommends the new IVI-
COM driver and the VXIplug&play
WINS32 driver for instrument control.
IVI-COM is the only component PC
driver built on the PC standard COM
architecture; the IVI-COM standard is
being led by Agilent and other instru-
ment companies. A component driver
built on COM works in all popular PC
languages and most T&M languages,
uses the most popular types of I/O
can be used in the latest .NET tech-
nologies and is backward-compatible.

Use direct 1/0 if

* You have instrument programming
experience or access to programming
experts.

* You need to use instrument features
not supported by the available drivers
(the other 40-80 percent of the
instrument capability).

* You need the absolute maximum in
system throughput speed.

* You need to control the exact
configuration of the instruments in
your system.

* You have a large volume of legacy
SCPI-based code.

Figure 3.10. The three generations of drivers represent varying degrees of language independence.
IVI-COM is the newest and the one supporting the widest variety of software environments.

Instrument driver families

Component PC
(based on
PC standards)

Traditional T&M
(based on T&M standards)

Proprietary T&M

(specific to one language)

IVI-C
(via NI)

WIN
IVI-COM

VXiplug&play

. VEE LabVIEW
t;l;vlyll::gm:; Panel Plug&Play
Drivers | (VXIplug&play
GWN)

IVI drivers

In 1998, test and measure-

ment companies formed the
Interchangeable Virtual Instrument
(IVD) Foundation® to address the high
cost of developing and maintaining
test system software and the need

to evolve technology more rapidly
through the use of better drivers. The
foundation comprises end-user test
engineers, equipment manufacturers
and system integrators with many
years of experience building test
systems.

IVl classes

The goal of hardware interchange-
ability led IVI to the concept of
instrument classes. The idea is
simple: If you use a spectrum
analyzer, it certainly would save time
if you could program every instru-
ment in the spectrum analyzer class
the same way, no matter who built
it. Both the specification and any
specific driver that implements it
are called an IVI Class Driver (IVI-C
Class or IVI-COM Class).

As of this writing, the IVI Foundation
has defined the following instru-
ment classes: DC Power Supply,
Digital Multimeter (DMM), Function
Generator/Arbitrary Waveform
Generator, Oscilloscope, Power Meter,
RF Signal Generator, Spectrum
Analyzer and Switch. Others are
under development.

This work makes it much simpler for
the engineer to program instruments
from separate suppliers whenever
those instruments conform to a
particular class.

3 For additional information, you can
visit the IVI Foundation website at:
www.ivifoundation.org.

33

Finding drivers and technical
advice

Instrument vendors typically provide
drivers on a CD with new products
and offer their most up-to-date
instrument drivers on their Web
pages. For downloads or more
information on Agilent drivers, I/O
software, connectivity and applica-
tion software, join us at the Agilent
Developer Network: www.agilent.
com/find/adn. Note that we do not
post drivers written by other parties.
Because you are at the mercy of
whoever created the driver, it is a
good idea to use a driver supplied

by the same vendor who made the
equipment.

Third-party software and systems
integration companies that support
the test-and-measurement industry
can provide driver development tools
and services. Two such companies
are Pacific Mindworks (www.pacific-
mindworks.com) and Vektrex (www.
vektrex.com).

For advice on mixing I/O hardware
and I/0 software from different
suppliers, see ftp://ftp.agilent.com/
pub/mpusup/pc/binfiles/iop/m0101/
readme/trouble/niinfo.htm.

34 3. Understanding Drivers and Direct 1/0

Conclusion

If the project you are pursuing is not
complex, there are often situations
where you don’t even know you are
using a driver. Indeed, the ultimate
goal of T&M companies is to keep this
process entirely transparent. In the
meantime, if you do get embroiled
with issues of driver selection, note
there can be tradeoffs between speed
of development and speed of execu-
tion. The industry is working through
these issues by instituting faster I/0
and software aids, such as tools to
keep track of instrument states. The
whole idea is to give you both fast
programming and fast throughput.

If you choose to use a driver,
computer industry-standard IVI COM
drivers and a Visual Studio .NET-
compliant development program such
as the Agilent T&M Programmers
Toolkit give you significant leverage.
The T&M applications you develop
will show significant hardware and
software interchangeability, while
being easily maintainable and exten-
sible. Plus, the intellectual property
you create during the development
process will be widely transferable to
other projects.

4. Choosing Your Test-System Software Architecture

Introduction

This chapter will help you under-
stand the tools required to design,
develop and deploy the software
component of your test system

(see Figure 4.1). The information
presented here will help you choose

the direction for your software based

on the application you have in mind
and the amount of experience you
have. We will explore the entire
software development process, from

gathering and documenting software

requirements through design reuse
considerations.

 Gathering and documenting software
requirements. Before gathering
and documenting your software
requirements, finalize your test
system hardware design. Once
finalized, start working with your
R&D and manufacturing teams to
collect the information you need
to create software requirements
specifications (SRS).

Programming and controlling your
instruments. The control of instru-
ments is rapidly evolving from
proprietary test and measurement

standards to open, computer-based

industry standards. This trend

affects the hardware that connects
the PC to the instrument as well
as the software and drivers that
control the instrument.

Collecting and storing test data.
Data collection is the science of
obtaining, moving and formatting
data. The integrity of your test
system depends on obtaining the
right data at the right time.

Designing the user interface. One of
the most important (and easily
overlooked) aspects of test systems
is the graphical user interface
(GUI). This is what the test engi-
neers, operators and technicians
see when they interact with your
software.

Choosing the development environ-
ment. The software environment
and tools you choose will have a
significant impact on the overall
cost of your test system. When
choosing your software environ-
ment, consider more than just the
purchase price of the software.
Also, consider how easy it is to
learn and use the software, how
hard it is to connect to other
languages, devices or enterprise
applications, as well as support

Figure 4.1. Test-system software development process overview

ﬂ

Gather [
manufacturing | Data
requirements | collection
| Performance
Gather | Software
R&D | Requirements
requirements | Specifiaction (SRS)
| Test
- specification
Finalize |
t:sat,-:z::::' | User interface

Open standards?

Graphical or
textual?

Test executive?

Design operator interface

Prepare data collection strategy

Design for reuse

and maintenance costs. Over the
life of a test system, software
support and maintenance costs
alone can exceed hardware costs.

Working with open standards. Today,
the industry trend is to move away
from closed, proprietary develop-
ment environments. More and
more people are embracing open,
industry-standard development
environments as their platform of
choice for test-system development
projects. Making the right choice
now will give you the flexibility and
capabilities you need in the future.

Developing a test sequence. Test
executives are applications
designed to run a series of tests
quickly and consistently in a pre-
defined order. Of the 93 percent
of test-system developers who use
test equipment, approximately

37 percent use a commercial test
executive for test sequencing, while
the remaining 56 percent use a
“homegrown” test executive.

Planning for software reuse.
Designing for code reuse means
you and your co-workers won’t
have to re-create your software
components every time you start a
new project. Instead, you can build
up a company knowledge base

of best ideas, best practices, and
software components. This knowl-
edge base will bring uniformity
and consistency to your company’s
product testing functions.

This chapter will provide you with a
solid overview of the test system soft-
ware architecture as outlined above.
For more in-depth information, refer
to the sources listed throughout this
document. Now, let’s get started with
the first phase of choosing your test-
system software architecture—gath-
ering and documenting your software
requirements.

35

Gathering and documenting
software requirements

The Software Requirements
Specifications (SRS)'is a prioritized
list of required test-system software
capabilities and information on

the software’s external interfaces,
performance requirements, system
attributes and design constraints.
Typically, some requirements “musts
are essential and others “wants” can
be traded for time (e.g., to meet a
project deadline).

”

The IEEE identifies the following
areas you should address in your
SRS:?

* Functionality. What is the software
supposed to do?

1 May be referred to as an ERS or
simply as “the requirements.”

2 For more information, refer to
the IEEE Standard 830-1998
“Recommended Practice for Software
Requirements Specifications” and the
IEEE Standard 1233-1998 “Guide for
Developing of System Requirements
Specifications” located on the IEEE
web site (http://standards.ieee.org).

Figure 4.2. Scope of the SRS

+ External interfaces. How does the
software interact with people, the
system’s hardware, other hardware
and other software?

+ Performance. What is the speed,
availability, response time and
recovery time of various software
functions?

* Attributes. What are the portability,
correctness, maintainability and
security considerations?

+ Design constraints. What industry
standards need to be followed?
Does a specific language need to be
used? What about internal policies
for database integrity, resource
limits and operating environments?

Ideally, the SRS will describe WHAT
you need the software to do, not
HOW the software will do it. In other
words, you can look at the software
as a “black box” that controls a set of
external resources such as instru-
ments, a computer monitor and other
components (see Figure 4.2).

The SRS will include implementation
details only if those requirements
are imposed externally. For example,
your company may require that

a portion of the system be imple-
mented in a specific programming
language.

Results
database

Instruments

Other

resources

Operator
interface

h

{F{F
1 1

_J

-
=)

Test system hardware

36 4. Choosing Your Test-System Software Architecture

A good SRS answers the following
questions:

1. What measurements and tests are
required to exercise the device
under test (DUT)?

2. How will the measurements
and tests be performed given
the available instruments and
devices?

3. What types of data need to be
collected?

4. Where will the data be stored?

5. What are the external constraints
(e.g., performance and time
specifications)?

6. How will the operators, test engi-
neers and technicians interact
with the software?

Within the product development
lifecycle, the R&D department should
provide a formal list of testing
requirements to the test-develop-
ment department. The System
Requirements Specifications, also
referred to as a Project Requirements
Specification, refers to the system

as a whole and therefore is different
from the Software Requirements
Specifications. Furthermore, the
manufacturing department will have
its own requirements, such as safety
standards. It is the combination of
R&D and manufacturing specifica-
tions that determine the hardware
requirements of a test system and
provide the basis for the Software
Requirements Specifications.

It’s important to note that trying

to build or design software while
the test system hardware is still in
a state of flux typically results in
additional software re-work and re-
design. This is one of the challenges
you will face in the real world of
test-system development!

Figure 4.3 provides an SRS template
and a requirements example. As
shown in the template, SRS is more
than requirements. Document within
the SRS what the software is meant
to do and provide definitions for

the terms you are using. Document
the external constraints imposed
upon you and the external resources
you have available. Describe your
users in detail and the modes of
operation for each user class. Finally,
include appendices and an index.
Once you've completed these tasks,
you're ready to describe the specific
requirements. The requirements
example (user interface of a test
sequencer) is a snippet from a larger
set of requirements divided by func-
tion. The words “MUST” and “HIGH
WANT” are a way of ranking the rela-
tive importance of the requirements.
You can break up requirements into
more manageable hierarchies based
on function, program mode, or some
other classification system that will
make the requirements section easier
to navigate.

Figure4.3. SRS template and requirements

Example SRS template
Table of contents
1 Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions, acronyms and
abbreviations

1.4 References
1.5 Overview
2 Overall description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies
3 Specific requirements
Appendices
Index

The IEEE says that requirements
must be correct, unambiguous,
complete, consistent, ranked for
importance, verifiable, modifiable
and traceable. You can see that the
above format meets a number of
those goals, but some additional
practices are necessary to meet them
all. If you refer to requirements in
more than one place, you will need to
cross-reference them using a unique
number (3.4.3, for example) so that
if a requirement changes, you will
know where to fix it elsewhere in the
document.

Each written requirement needs to
be verifiable and unambiguous to
ensure the test program behaves

as expected. As you write the SRS,
refer to the System Requirements
Specifications whenever possible.
This is called backward-traceability,
helping to explain why certain
requirements are included and not
just an arbitrary restriction.

The SRS must describe what testing
resources (instruments) are required
(e.g., the type of voltmeter, switches,
computer monitor, etc.) and whether
any factory resources are needed
(e.g., a results database). In addition,
you need to define within the SRS
the data collection method, user
interface requirements, performance

Example requirements

3.4 User interface functionality:

3.4.1
debug sequences.

342
sequence run result data.

343

constraints and, most importantly,
the specific DUT test requirements.
For example, if you need to perform
a specific resistance measurement
and you know you have an Agilent
34401A multimeter, the SRS would
specify a single-sample 4-wire
measurement including a description
of the proper switching path, thus
ensuring access to the pins on the
DUT.

In order to accurately describe the
test-system software user interface
requirements, you should develop
specific use cases for the different
users of the test system (e.g., opera-
tors, test engineers, managers, etc.).
Use cases are scenarios describing
the users’ interactions with the
software. Taking the time to develop
well-written requirements specifica-
tions up front will save you time later
in the development process. The SRS
process forces you to think about
the scope of your project and helps
to identify poorly understood areas
of your software. This means you
will spend less time re-writing and
re-testing software due to confusion
over what was truly required in the
first place. A well-written SRS will
help ensure that the project portion
you want to contract out or redis-
tribute will not require re-work on
your part.

(MUST) The Ul allows the user to create, modify, run and
(MUST) The Ul allows users to view and export, load and store

(MUST) The Ul represents sequences in a hierarchical

manner, which may be expanded or collapsed to view or
hide internal details of the sequence.

34.4

(HIGH WANT) The Ul can represent shared (used several places)

sequences separate from the main sequence hierarchy.

3.45

(HIGH WANT) The Ul will use graphical icons to denote

variations in state of sequence items.

37

Programming and control-
ling your instruments

When designing your test-system
architecture, you need to think about
how your PC will communicate with
different instruments. The two most
important factors are deciding how
to physically connect the PC to other
instruments and deciding what
software will you use to control and
communicate with other instru-
ments. Refer to Chapter 2 for advice
on choosing an I/0O option and to
Chapter 3 for advice on choosing and
using drivers and other instrument
communication software.

Collecting and storing the
test data

Data collection is the science of
identifying, collecting, formatting
and distributing important informa-
tion about the behavior of your test
system and the devices it tests (see
Figure 4.4). Quality data collection
and analysis is the foundation for
controlling your manufacturing and
test processes—the ultimate goal of a
manufacturing test engineer. Quality
data also can be used to support
many functions throughout your
organization and support products
throughout their development
lifecycle.

Communicating results of a test
sequence is one use of test data. Test
data also may be used to ensure regu-
latory standards are met, document
performance standards, or provide
traceability for the DUT. Given these
applications and others, you may
want to collect more data than your
R&D or manufacturing colleagues
request.

In addition to external data require-
ments, recorded data can be used

to debug a test sequence in ways
debugging runs cannot. Debugging
means slowing down and subtly
changing the behavior of your test
sequence. This means a defect

you see in a normal run may not
show up in a debugging run (and
vice-versa). One way to reduce the
burden of diagnosing test software,
and its associated DUT, is to always
collect the data you need to debug a
problem. You will need to balance the
benefits of collecting extra data with
the costs in performance and time for
your test software.

Just as important as the standard
types of data (e.g., test limits,
measured values and pass-fail
judgments) are the contextual

data. Contextual data are used to
communicate everything relevant to
the DUT’s testing environment. This
includes the test-system configu-
ration, software version, driver
versions and other factors.

The more variables you record, the
more correlation points you and
your colleagues can analyze during

Figure 4.4. Overview of the data collection process

debug. For example, in one particular
manufacturing test situation, a DUT
would fail in the afternoon. The

test engineer was able to correlate
the time of day to the time of the
failure and use that information to
look more closely at a photoelectric
component of the DUT. It turned

out that sunlight would strike that
component directly at certain times
of the day, causing the component

to charge a capacitor and cause the
test to fail. A DUT may fail due to the
temperature variations or relative
humidity. Capturing contextual infor-
mation and measurement conditions
can save days of effort.

You want to ensure the writing or
formatting of your data does not
affect the behavior of your test
system. Today’s PCs use a variety of
caching techniques that can dramati-
cally affect how long it takes for a
given file or network I/O command.
If the time it takes to cache your data
varies between each test run, you will
get inconsistent test results. For that
reason, it’s a good idea to keep your
data in RAM until the end of your
DUT testing and then do your format-
ting and data transmission.

38 4. Choosing Your Test-System Software Architecture

(Loaded battery XML
response data file
(volts)
Results
database
Response
voltage limits
[12,100]
\ Report ticket
- printer
Model 208 "
SN:00010145 Fail!
Operator
12:03 pm interface
Dec. 14, 2004 m

Data is useless unless it can be
understood. Good data is

+ ldentifiable. Information identifies
the circumstances surrounding the
data and the condition in which it
was collected.

+ Searchable. The data posses
regular structure or fields that are
uniquely identifiable, making it
easy for a script or software tool
to identify and compare across
multiple records or datasets.

+ Transformable. Raw data must be
interpreted and displayed (insight
is the goal). This means that
software algorithms can perform
operations on some or all of the
fields of your data and create a
new data format or data visualiza-
tion based on your original data.

* Permanent. Data must remain
available and comprehensible.
Relational databases tend to be the
best choice for long-term storage of
data as these databases are highly
searchable. If your company does
not already have a database for

Table 4.1. File data format comparisons

manufacturing information, you
may want to consider a database
solution. This decision depends
on your company’s data storage
policies, practices and budget.?

Table 4.1 lists some common data file
formats and relevant characteristics.

Binary formats have the fundamental
issue of not being self-describing. In
addition, you need to acquire a sepa-
rate software application to interpret
the data. Depending on the software
application you use for interpreting
the data, you also may be limited

in the number of transformation
functions.

Text files are hard to search and trans-
form, and are not very identifiable.
Since plain text files do not have
regular fields, a text search for the
number 12, for example, could return
the hour twelve, the limit value 12, or
the DMM measurement 12.

3 Tufte, Edward R. “The Visual Display
of Quantitative Information.”
Graphics Press, 2001.

Binary Unformatted Comma-separated XML (Extensible
text variables (.csv) Markup Language)
Identifiable Only with Only for small Needs good column No major issues
special tools data sets format design
Searchable Only with Difficult and No major issues Excellent, but
special tools error-prone requires XML
expertise
Transformable Only with Difficult and No major issues Excellent, but
special tools error-prone requires XML
expertise
Permanent Only with Only for small No major issues No major issues
special tools data sets
Example: Only with Not importable Supported by Excel 2003 format
spreadsheet special tools Excel, others available
analysis

Comma-separated value (dot-csv) text
formats are a good choice since they
are easy to import into Microsoft
Excel. With Microsoft Excel, it’s easy
to make a table of results with the
rows containing the results and each
column containing a unique descrip-
tion. Another advantage is most data
analysis software can easily read this
format. The downside of this format
is that it cannot store hierarchical
data or easily parse data sets. You
must decide up front as to the
number and types of columns, with
each column containing one unique
data field.

XML*is self-describing, very trans-
formable, and has excellent search
characteristics. There is an XML
language called Extensible Stylesheet
Transforms (XSLT) that can apply
arbitrary algorithms to convert your
XML data into new XML formats,
HTML, or simple text formats.? A
number of data analysis programs,
including Microsoft Excel 2003,

can import XML data.’ If you fail to
output your data in the right XML
format for an analysis tool, you

can write a relatively small XSLT
that will convert all your XML data
into the desired format. XSLT also
provides a powerful search feature,
making it much easier to identify
data values or data structures.

4 Extensible Markup Language:
http://w3.org/xml.

5 Holzner, Steve. “Inside XML.” New
Riders, 2000.

6 XML in Microsoft Office: http://www.
microsoft.com/ presspass/press/2002/
Oct02/10-256XMLArchitectMA.asp.

39

The manufacturing test industry has
already begun adopting XML. Some
test executive applications support
XML data logging. There is a stan-
dard called IPC 25477 that defines an
XML format for communication of
manufacturing test data.

Figure 4.5 is an example of a
standard test run in XML format.
You will still want to know the test
sequence ID, the variant of the test,
if the test limits are modifiable on
the “PowerTest” and the hardware
configuration of the test system.

If this were a .csv file, we would have
to create a field for every record to
answer those questions. Using XML,
we can insert a record type called
<TestSequence ID="32"> and fully
describe the current test sequence

in that record. We can then add an
XML attribute called “IDREF” to refer
to that test sequence record in our
<TestRun> records.

In summary, the data format you
choose will have a large impact on its
value over time. You need to consider
how easy or difficult it will be for
someone else to read and interpret
the data once you are no longer
involved in the project.

7 IPC 2547: http://webstds.ipc.
org/2547/25647. htm

Figure 4.5. XML report file

Designing the user
interface

When a user displays generated by

a test system should vary according
to the class of user, such as operator,
test engineer, technician, or service
and calibration engineer. A well-
written SRS defines the commands
and/or menu selections available

to each user class. You will want to
provide each user class with only the
capabilities and information those
people need to do their jobs. The
more choices you provide, the greater
the possibility for confusion and
mistakes.

To ensure security, you can create
a unique login for each of the users.
Each user login should be linked to
the appropriate class.

You can verify that your GUI meets
the users’ needs with a methodology
called “User-Centered Design,” or
UCD, which consists of prototyping
and storyboarding.®®In general, a
test system’s GUI should be able to

8 Vredenburg, Karel, et al, “User-
Centered Design, an Integrated
Approach.” Prentice Hall PTR, 2002.

9 Norman, Donald A., “The Design of
FEveryday Things.” Basic Books, 2002.

1. Customize its behavior based on
the user class.

2. Provide or allow input of detailed
information about the DUT.

3. Provide information about the
state of the system.

4. Provide operations for controlling
the system’s state and potentially
its configuration.

5. Display the DUT testing results.

For an operator, the interface you
design should always show the state
of the test system (e.g., running

a test, paused or stopped). For
example, you could use a large color-
coded graphic on the PC monitor in
conjunction with lights mounted on
the test system. The operator also
will need a way to control the state
of the test system as well as a way to
input DUT information (unless this
is done automatically via a bar code
scanner).

As a general rule, test program
should have the following features:

1. Commands for starting and stop-
ping the test sequence.

2. Commands for sending test
results to various kinds of
printers (defect report ticket,
etc.).

<Puml version="1.0" 7>

- «TestReport xmins="urn:Agilent /EPSG/Casper/Production’>

- <Sequence name="FastTestA.tsq">

<DUT serialnumber="0000100245" model="101" /=
=TestEny operator="Joel" host="fasttest3" date="1/22/04" time="01:24:31 pm GMT" />

<Result success="0" message="PowerTest: Yoltage outside Expected Range" elapsedSeconds="109" />
<Test name="PowerTest" success="0" /=

</Sequences
- «<Sequence name="FastTestA.tsq">

<DUT serialnumber="0000100246" model="101" /=
=TestEnv operator="Joel" host="fasttest3" date="1/22/04" time="01:29:03 pm GMT" />
<Result success="1" elapsedSeconds="124" /=
<Test name="PowerTest" success="1" /=

</Sequencex>
=/TestReport:=

40 4. Choosing Your Test-System Software Architecture

3. Control of the behavior of the
test sequence (i.e., picking a DUT
variant from a drop-down list).

4. A way to display a more detailed
description of test results. The
quality of a test results message
can help in providing a quick
diagnosis of a user error or a
recurring hardware problem and
may ultimately eliminate the need
for a test engineer to visit the
factory floor.

The user interface shown in Figure
4.6 was designed for an operator in

a low-to-mid-mix/high-volume test
application. The operator starts by
logging into the test system, selecting
the name and version of the test plan
and entering the DUT information.
The test status portion of the display
is a little less prominent and visible
than recommended for a manufac-
turing test environment, which may
necessitate the addition of test status
lights to the test system.

The system message field displays
the test result information as well

as instructs the user on what to do
next. To help the test engineer during
the debugging process, the system
message field also can display error
messages.

The user interface shown in Figure
4.7 was designed for a high-mix, very
low volume testing situation (e.g., cell
phone base stations). It also can be
used for test sequence development
or debugging. The class of user for
this interface is highly skilled and
possesses detailed knowledge of the
purpose and function of the available
tests, the DUT, and the test system
configuration. An unskilled test
operator would not be able to use
this interface effectively.

The two GUIs were created with

the same test software, though they
vary considerably in complexity.

The operator GUI in Figure 4.6 hides
unnecessary choices and information
critical to the software developer.

Figure 4.6. Low-mix, high-volume user interface

Test Exec SL Functional Test Station

— Testplan -

SRR AR -

Wanant | :J
LT Infoumnation -

UUT Wames: UUT Mame

Serial Nusmber |

Tt Stabus

Siestem Stabe; |dle

LUT Test Resul: Unknown

Last Test Time: CrOCe Q00

Average Test Time: CrO0e00-00

Modide Passed Since Start i
Madubs Faded Since Start i}
Operator: wild

- System Message

Plaase select a testplan from the testplan name field.

Figure 4.7. Software developer’s interface

TestExecSL

Test Plan TestVariant |UH\[UHdE[TESlSE[UDI Equ\pmaﬂlSEIEclinnl Tastﬂepurlsl Adm\nislralinnl

Logn

Exit

Test Bepat Showne [~

r UUT Infarmation
UUT Mame
Serial Number

Static:
Static

Optiahe

Static:

r Test Plan Information
Test Plan Selection

Test Plan Y ariant

[/

Awailable Tests

Selected Tests

Chatnel Rejection Test -

Extemnal GPS Test 3 |
Frequency Accuracy Test
Frequency Rlange Test
Frequency Fesponse Alignment Tes
Internal GPS Test < |
Lo Emissions Test

Moize Figure Test

FRieference Alignment Test

RF Flatness Test

RS232 Loopback Test 2
Step Gain Accuracy Test
Sten Gain Alianment Test

I™ Loop Test
™ Step Test

r Test Completion Statu;

Start Test | Stop Test

Save |

o |

Cancel Lppl

/M

Choosing the development
environment

The next step in choosing your test
system software architecture is

to select a software development
environment. The software environ-
ment and tools you choose will have
a significant impact on the overall
cost of your test system. When
choosing your software environment,
consider more than just the purchase
price of the software. You need to
consider how easy it is to learn and
use the software, how hard it is to
connect to other languages, devices
or enterprise applications, as well as
support and maintenance costs. Over
the life of a test system, just software
support and maintenance costs can
exceed hardware costs.

You have a number of options when
it comes to software development
environments, from writing every-
thing yourself in a language such

as C, C++, C#, VB, VB .NET, Agilent
VEE, MATLAB or LabVIEW, to using
an off-the-shelf test executive with
pre-written third party tests. The
software environment you choose
needs to accomplish two goals:

1) meeting your time-to-first test
requirements and 2) meeting your
test-throughput requirements. How
fast can you get your test system up
and running, and how can you get
the greatest throughput?

Software development environments
can be grouped into two categories:
graphical or textual. Graphical
environments, such as Agilent’s VEE
Pro 7.5 (see Figure 4.8) or LabVIEW,
are considered easy for engineers

to learn and use, largely because of
engineers comfort with the schematic

environment. In addition, it is easier
to modify small to medium size
graphical programs versus textual
programming languages. Historically,
textual programming languages ran
faster in the manufacturing environ-
ment and yielded higher throughput.
Today, there is less difference
between the runtime speeds of a
graphical environment and a textual
environment..

Even though graphical environ-
ments are easier to use than textual
environments, textual environments
are used more commonly in manu-
facturing test systems. Only about 22
percent of the half million-plus users
who write code for test and measure-
ment equipment use a graphical
programming language.

Graphical or textual
programming?

Before you can decide on which
development environment is best for
your application, it’s important to
understand the use model of each in
greater detail.

Graphical programming is accomplished
by manipulating images, called icons
or objects, and the lines that connect
these images. The images represent
pre-made commands while the lines
represent the program flow, control
points, and /or how data are gener-
ated and consumed. The icons and
interconnecting lines are contained
within the integrated development
environment (e.g., the software
program).

Figure 4.8. Agilent VEE Pro graphical programming environment

*“i agilent VEE Pro - keith demo.vee)

/O Data Digplay ‘Window Help

Eile Edit Miew Debug Flow Device

N Ju] 3

B EE vain

IS ES

R R E SN ® M EE s b B o o TR
[@Egvan &

= =

Wiaveform (Time)

Func | 05

L Main Function Generator
tion lm
uency 200
litude |1—
Iﬁset #
S I |
gpan 20m

[From File (From File)- m.7 |

Tracel -1

4| =

El Appearance

=]

BackColor [Object ;I
Fant Ohject Text _l A+H
ForeColor [l Obiject Text

EX)

ShowTeminz True

ShowTillsBar True B

Title ""From Fils"

Result | Tirne

Title BackCol (2] Obiject Title

= To File]

Title Font Object Title Text Moise Generator

Titke ForeColc Il Obiect Title T
Bl Behavior
BreakpointEn False

Amplitude | 1
Time Span IZDm

[4] : |
Tao File myFile

[~ ClearFile &t PreRun & Open

Bl Design

Objectindex | b7 Num Foints | 256

= Double-Click to Add Transaction =

Bl IconAppearance
lconPicture [hone)

noise WE 1| 3 |
i

ShowlconTith True

BackColor
Background color of the detail
wview of the Object

From File

] Magnitude Spectrum -

[[

Baar

42 4. Choosing Your Test-System Software Architecture

Evartinda UVEER [ERAE [on DiEs

Many graphical programming
environments provide the ability
to create compiled or packaged
programs that do not need the
programming environment to run.
There are several graphical program-
ming environments targeted at test
and measurement engineers. These
programs tend to have extensive
I/0 and instrument drivers, and
T&M-specific math and graphing
operations.

Some of the advantages of graphical
programming languages over textual
languages are as follows:

1. No complex syntax. The program
instructions, typically presented
as a group of icons connected
by lines, are more immediately
understandable.

2. Easier visualization of the paths of
execution and interaction. Multiple
concurrent activities rely on
what is called a data-flow model,
where a command needs to have
all its data available before it will
execute. This is easier than using
multithreaded programming tech-
niques in textual programming
languages such as C++ or Java.

3. Real-life metaphors. The icons
representing the commands can
use metaphors (images) that
represent real-world equivalents
of the actions carried out by the
icon. Most test engineers find
graphical programming to be
more intuitive and user-friendly
than textual programming.

4. Rapid prototyping. With the
intuitive nature of a graphical
programming language, it can
be easier to quickly build a
prototype of your system. The
prototyping capability is less

useful when dealing with a large
test system, but prototyping can
aid development of systems of
any size.!”

Ability to share and learn existing
programs easily. Using real-life
metaphors as visual cues can
make it easier to share and learn
existing programs and increase
productivity.!!

10

11

Rahman, Jamal and Lothar, Wenzel,
“The Applicability of Visual
Programming to Large Real-World
Applications,” 1995, http://www.
computer.org/conferences/v195/html-
papers/wenzel/paper.html.

Blackwell, Alan F. and Green,
T.R.G., “Does Metaphor Increase
Visual Language Usability?,” IEEE
Symposium on Visual Languages
VL’99, 1999, pp. 246-253.

Textual programming languages

use special words and syntax to
represent the program’s operations
and flow. Most, but not all textual
programming languages are based
on open standards. This means you
will have a choice of vendors when it
comes to your programming environ-
ment and software tools. Textual
programming languages have a much
larger set of third-party drivers,
tools, and add-ins because they are
based on open standards and are
more widely used than graphical
languages. This benefits the test
engineer.

Some of the advantages of textual
programming languages over graph-
ical languages are as follows:

1. Ability to handle large programs.
Textual programming languages
are better suited for creating
larger, more comprehensive
programs.

Agilent VEE Pro and T&M Programmers Toolkit

Agilent VEE Pro

« Description: Easy to use, powerful graphical instrument programming

environment

« Applications: Data acquisition, design, low volume manufacturing test

* Purpose: Graphical program creation to acquire and analyze instrument data

« Features: Easy test-system control, sequencing, support of Microsoft NET
framework, MATLAB® analysis and visualization, full support of ActiveX

Agilent T&M Programmers Toolkit

+ Description: Test code development (in VB .NET, C++ or C#) integrated into Visual

Studio .NET

« Applications: Design characterization, design validation, manufacturing

 Purpose: Writing complex programs with a variety of drivers in a PC standard

environment

* Features: Instrument I/0 and communication, test code debug, data collection,
display and analysis, support for IVI-C, IVI-COM, VXIplug&play drivers

43

2.

Simpler navigation of large programs.
For larger programs, textual
programming languages are
easier to navigate and compre-
hend. A person can observe only
about 50 graphical objects at

a time before the information
becomes too complex or too small
to see.'? If a user is forced to move
around in a program to see all its
objects, he or she can lose track
of the control and data lines and
find it difficult to understand

the overall flow of the program.
With that said, you can improve
the understandability of large
graphical programs by breaking
up the program’s large operations
into smaller suboperations. This
is called functional decomposi-
tion and is achieved by putting a

4. Greater choice of development
environments. For example, there
are few graphical programming
languages that have develop-
ment environments provided by
multiple vendors. This means that
today’s graphical languages are
less likely to have the advantages
created by competition between
vendors.

Graphical programming tends to

be easier to learn and comprehend
while textual programming is more
pervasive and open. Table 4.2
summarizes the differences between
the two programming environments.

Working with open
standards

Choosing between proprietary
and open standards

Several factors to consider when
deciding between an industry stan-
dard and a proprietary development
environment are 1) cost, 2) industry
support, 3) upgradeability, and 4)
extensibility.

Development environments for open
standard programming languages
have a greater feature set and are
less expensive than their proprietary
counterparts. Simply stated, an

open standard environment tends to
create greater competition, which in
turn tends to drive down prices and
create innovation.

Open-standard languages generate a

lot of interest from both software tool
vendors and open-source developers.
Both of these groups spend consider-
able time understanding the needs of
the test-system programmer and, as a
result, develop both free and for-pay
tools and applications to meet those
needs. A good example is the tremen-
dous number of C and C++ libraries
available on the market, both from
vendors and from end-users. These
libraries save development time and
money given that it is faster and less
expensive for a developer to buy the
domain-specific software (such as
mathematical analysis libraries) than
create it from scratch.

series of commands into a “black
box”. You then send commands to
the functional block and receive
its output as appropriate. Make
sure the graphical program you
use supports this functional
decomposition'? if you plan on
working with larger programs in a
graphical environment.

In addition to choosing between
graphical and textual programming,
you need to consider whether the
environment you choose will be
based on industry standards or
propriety, vendor specific technology.
C++, Visual Basic, and C# are all
examples of industry standard
programming environments. Agilent
VEE Pro and NI LabVIEW are
examples of proprietary development
environments although Agilent VEE
Pro 7.0 does allow for access into
industry standard technologies such
as .NET.

3. Higher system throughput. The
faster runtime speeds of a
textual programming language
can improve overall system
throughput. However, be aware
that the time spent during instru-
ment operations will often have
a greater impact on throughput
than the choice of programming
environment. For example, time
lost through inefficient signal
switching between the test system

Table 4.2. Graphical versus textual programming

Graphical Textual

and the DUT can far outweigh
any time savings earned through
choice of programming language.

12

Begel, Andrew, “LogoBlocks: A
Graphical Programming Language
Sor Interacting with the World,” 1996,
http://www.cs.berkeley.edu/ ~abegel/
mit/begel-aup.pdf.

Free and open

Few open standards, less
extensible

Dominated by open standards,
very extensible

Rapid prototyping

Excellent T&M prototyping
features

Some code wizards, (T&M
Programmers Toolkit, for
example) but slower

T&M support

Several graphical environments
targeted at T&M, many drivers

Several T&M-specific 3rd-party
tools available, many drivers

3rd-party tools

Hundreds

Tens of thousands

Learnable and

Easy to pick up and use programs

Only small or very-well-designed

shareable programs are easy to share
13 Glinert, E. P., “Visual Programming
Environments,” IEEE Computer
Society Press, 1990.
44 4 Choosing Your Test-System Software Architecture

Open standard environments also
have a time-to-market advantage,

as most proprietary environments
cannot quickly take advantage of
emerging technologies. Emerging
programming technologies are devel-
oped with the most common open
standard programming languages in
mind. It takes longer for a vendor to
release a new version of proprietary
software that takes advantage of new
technology.

The .NET framework

The .NET framework is an open,
multi-platform, multi-vendor set of
software technologies for program-
ming computers. The C# language
has been submitted to a standards
body as an open language. The
underlying .NET “Common Language
Infrastructure” technology, also

an open standard, is available in
multiple operating systems, including
Microsoft’s Windows and Linux.

The .NET technology has excellent
support and applicability to both
web development and PC software
development environments. The
.NET technology has many of the
advantages of Java language without
many of Java’'s drawbacks. For
example, the .NET technology elimi-
nates programmer memory leaks,
makes software deployment easier,
and provides a rich Application
Programming Interface (API) for
system and GUI development. The
.NET technology is fully compiled via
a Just-In-Time (JIT) compiler. The JIT
compiler takes the operating system
(0S) and platform independent code
and creates optimized, machine-level
code for the target platform.

While there is some additional
overhead required to load the .NET
framework runtime, programs
written with .NET are comparable, or
run faster, than their C/C++ counter-
parts.'* The reason programs can run
faster in the .NET environment is due
to the inefficiencies inherent in the
linker operation of older languages.'®

A survey of programmers and a
number of case studies have shown
significant improvements in produc-
tivity via the .NET environment over
the programmers’ old environment.!¢

The .NET Framework (the collection
of API services and helper code used
by the .NET languages) is not the
same thing as Visual Studio .NET.
Visual Studio .NET is Microsoft’s
development programming environ-

14 Wilson, Matthew, “Does C# Measure
Up?” Windows Developer, Volume 2,
Issue 13, Fall 2003, http://www.wd-
mag.com/wdn/webextra/2003/0313

15 Johnson, Mark S. and Miller
Terrence C., “Effectiveness of a
machine-level, global optimizer,”
1986, http://portal.acm.org/citation.
cfm?id=13321&dI=ACM&coll=portal

16 http://www.microsoft.com/net/
casestudies

ment with support for the .NET
technologies. As shown in Figure 4.9,
there are multiple .NET development
environments and programming
languages available from a number of
different vendors and supported on
multiple platforms.

The best-known .NET languages are
C# and Visual Basic (VB) .NET. C#

is a lot like Java in structure and
features, but its syntax is meant

to be an evolution of C++. A C++
programmer familiar with object
orientation and exception handling
could easily move to the C# program-
ming environment.

VB .NET is an upgrade to Visual
Basic 6. Engineers with existing VB
6 applications must use an upgrade
wizard to migrate to VB .NET. Once
the upgrade process is complete,
access to .NET applications and
the additional power and flexibility
provided by .NET can be achieved.

Microsoft’s C++ language also

has been enhanced to include a

new version called Managed C++.
Managed C++ makes it easier to
execute calls within the .NET soft-
ware. Microsoft provides the original
unmanaged C++ in Visual Studio
NET as well.

Figure 4.9. Programming languages within the .NET framework

Managed
C++

Visual Studio .NET

Visual designers,
editor, debugger

C.LI,
common language
infrastructure

VB .NET, ASP .NET

.NET class
library API

a5

One significant advantage of .NET
over older programming technologies
is its extensibility. Microsoft engi-
neered .NET so that it avoids a lot
of the DLL installation frustrations
Windows programmers experienced
in the past. There are already a
large number of third-party tools
for .NET. Many of these third-party
controls (i.e., advanced graphing
visual controls) are useful to test-
system programmers. Additionally,
several test and measurement
vendors, including Agilent
Technologies, National Instruments,
and Measurement Computing, have
released .NET-compatible tools. For
a complete list of released .NET-
compatible tools, refer to Microsoft’s
NET partner web site at www.
vsippartners.com.

Agilent Technologies’ first add-in

for Visual Studio .NET is called the
Test and Measurement Programmers
Toolkit (see the sidebar on page

43). The T&M Programmers Toolkit
provides I/0 tools, graphing and
mathematical libraries, T&M specific
help and example generators, and
NET wrappers for instrument
drivers and other software. The T&M
Programmers Toolkit is fully inte-
grated into the Visual Studio envi-
ronment. For more information on
Agilent’s solutions, go to http://www.
agilent.com/find/toolkit or http://www.
agilent.com/find/iolib. To download
NET-related I/O source files, which
also work with the Agilent I/O
Libraries, go to the Agilent Developer
Network (ADN) web site at http://
www.agilent.com/find/adn.

Developing a test sequence

In a survey of more than 2,500 test
and measurement equipment users,
93 percent of the respondents said
they use multiple test instruments
and /or are connecting their test
instruments to a PC. Of that, 37
percent said they use a commercial
test executive for test sequencing.
The remaining 56 percent of these
respondents use internal or “home
grown” software for test sequencing.

A test executive is a software
application designed to run a series
of tests quickly and consistently in

a predefined sequence. If any of the
tests within the test sequence fail,
then the DUT fails. Over the years,
test executives have improved consid-
erably both in terms of flexibility
and capabilities. First-generation
test executives were language-
specific and not powerful enough

for a mission critical manufacturing
environment. Second-generation
test executives, such as Agilent’s
TxSL and NI's TestStand are more
powerful but more expensive. They
also lack the flexibility required for a
low-volume, high-mix manufacturing
environment.

Each of the tests within the test
sequence is a separate module.
Commercial test executives come
with a standard set of test modules

Figure 4.10. The test executive test sequencer

and allow the user to create addi-
tional test modules from scratch

(as well as customize existing test
modules). Test executives control
the data to and from the test module
and, after collecting and analyzing
all of the data, determine if the DUT
passed or failed.

One reason for using a test executive
is it provides a structured framework
for manufacturing test systems. Test
executives work best in medium- to
low-mix, and medium- to high-volume
manufacturing test environments.

Test executives are written so that
sequence design, individual test
design, and test limits and configu-
ration management are treated as
separate tasks. Keeping the three
tasks separate results in greater
flexibility, higher quality, and an
increased opportunity for code reuse.
It is the test executive that provides
the infrastructure and helper
services required to connect each of
the separate tasks into a complete
program.

One of the most important features of
a test executive is its test sequencer.
As shown on the left side of Figure
4.10, the test sequencer is a sequence
of tests that can be manipulated in
design mode. Various test executives
provide different levels of flexibility
in this sequence, such as “test
looping.”

w, Exec3 - |a)=
Eile Model Dut Settngs Fluglns Help
Fepeat
w3 e
Run Stop On
& pll © MagFail Select | ’7(' Mo & Egor © Fal © Mag © Al |
Test Frocedure Test Wiew
IFinaI ﬂ Eeasulis ’75' Al Marg € Fal Clear |
I_. Time [Pass [Test | Measurement | Datapoir | Value [Spec [at
-
: 1015 P Ch=l 01233 dB 1 kHz]
1016 Marg Fiange=2%p; Frieg=1kHz Ch=2 0.19dB 1kHz
10:17 I cmpliude Chel 020 . 1 kHz|
1018 P Accuracy Ch=1 0.005 dB 1 kHz
& Ranga=5Vp; Freq=100kHz MGER Range=5¥p: Freg=100kHz Ch=2 0.002 dB 1 kHz]
~- @ Chel 10:20 P Ch=3 0.005 dB 1 kHz|
@ Ch=2
LBy Ch=3
E@ Harrnanic: Dishortion Test
[+ %1 Range=%p; Harmanic=2
%1 Ranne=Fin: Hamanie=1
| E14394 US392201 23 ‘ Running Ampltude Accuracy ‘ [Dizp lines from test sw appear here) 2

46 4. Choosing Your Test-System Software Architecture

At a minimum, test executives should
perform the following tasks.

1. Capture the results (and any
extra data) using their own data
collection model.

2. Keep track of the test limits
and test setup data, passing the
setups to the tests at execution
time.

3. Provide limit checkers.

4. Provide run-time analysis of
the test results (pass or fail
reporting).

Additionally, test executives may
include a software repository for
maintaining the test modules (and
for encouraging the reuse of tests).
With a software repository, the test
engineer can look for a specific test
by doing a search within the test
module repository. If all the engi-
neers in a company settle on one test
executive, it then becomes possible to
share test modules between different
product and manufacturing groups.

Test executives may use a switching
model that makes it possible to

map the physical layout of the test
system’s control and data lines (and
any switch boxes) to the DUT and
instrument’s I/O pins. This allows
the test engineer to think in terms of
logical connections between instru-
ments and the DUT, rather than
worry about how the system is wired.

Finally, some test executives include
tools for building the operator
interface. While this feature tends to
be less flexible than using one of the
development environments discussed
earlier, it does provide a fast and
simple alternative.

Planning for software reuse

Aside from the use of standard
libraries and operating system

APT’s, most software reuse tends

to be opportunistic. A typical reuse
scenario is when a programmer
encounters a problem and remem-
bers a similar problem handled

by a co-worker. The programmer
searches through the old source code
of previous programs to find the
desired code. If the code is found,
the programmer decides how and

if the software can be adapted to

the current test situation. After
modifications are made, the software
must then to be re-verified. Most of
the time, adapting software in these
situations is faster than creating
software from scratch.

The scenario above could have been
improved with a systematic software
reuse approach. The advantages

of a systematic approach is in the
reduced time it takes to search, find,
verify, and adapt test code for new
test situations. A systematic reuse
approach requires following specific
coding and architectural styles, as
well as adherence to standardized
company policies and practices.

Discussing all of the considerations
for implementing a complete compa-
nywide systematic reuse program

is outside the scope of this chapter,
but there are decisions you can make
to help achieve a more systematic
approach for yourself, your team,
and even your company. Reuse
considerations should begin after
you've gathered system requirements
and before you begin the software
development.

Professional test executive
or custom software?

How do you decide if you should
create your own test executive or buy
an off-the- shelf version? Here are a
few factors you will need to consider.

1. The first thing to look at is
whether you need a test executive
at all. If you don’t have a relatively
fixed sequence of tests, test
executives are probably not right
for you.

2. If your company has an internal
test executive, or more likely,
several internal test executives,
you'll need to investigate their
quality, features, availability of
support, and the collection of
tests or other auxiliary software
available for them.

3. If you find a reasonable choice, it
doesn’t hurt to look at the cost of
porting existing code over to use a
professional test executive.

4. You may decide to use a profes-
sional test executive because of
its support, quality or features.

5. A professional test executive most
likely will have better outsourcing
characteristics. Third-party soft-
ware contractors and consultants
may already have experience with
such a test executive, and third-
party libraries may be available.

6. A professional test executive
should include a complete set of
documentation.

If you choose to go with a profes-
sional test executive, make sure
it's from a company that provides
high-quality service and support.

47

The design reuse process

The first step in the design reuse
process is to complete a domain
analysis. This is accomplished by 1)
systematically analyzing the func-
tions and parts of your software
domain, and 2) using this informa-
tion to develop a software architec-
ture with well-defined component
types and algorithms.

Next, you will want to look for
natural boundaries in your software.
One software design practice of
finding and documenting the natural
boundaries is known as Design
Patterns.!” To find the natural bound-
aries, look to those areas where one
type of activity or data set links with
another type of activity or data set.
These areas can then be grouped into
separate modules and documented
accordingly. Once documented,

the same type modules can then be
swapped for one another.

Once you have identified, collected
and documented your modules,
components and /or individual parts,
you will need to thoroughly test them
before they go into the repository (or
are passed on to your co-workers).
This will save you and your co-
workers from problems later in the
process.

Finally, reusable components are
reusable only if your co-workers
know they exist. You need a reposi-
tory (such as a relational database)
for your modules where anyone in
your team, division, or company (if
appropriate) can browse and search
for them based on what the compo-
nents are and what they do.

17 Shalloway, Alan and Trott, James
R., “Design Patterns Explained: A
New Perspective on Object-Oriented
Design,” Addison-Wesley Pub Co,
2001.

A design reuse example

A good model for design reuse of
individual test modules is the test
executive—here’s why.

1. Some test executives break test
software up into swappable tests,
sequencers, limit checkers, test
sequence and test limit data.'®

2. Test executives rely on the
concept of modules. For example,
you can have a module that
provides the ability to perform
a single pass or fail judgment,
including the sequencer data
type, the sequence execution
operation, and the test types.

3. Test executives allow reuse of
tests in different test sequences
with no change to the test code.
The sequencer provides the
necessary data to the tests to
customize their operation for the
current test sequence.

4. Test executives keep the tests in
separate modules or files from
the test sequencer or test execu-
tive application. This allows you
to easily swap tests in and out
without recompilation.

5. Some test executives allow you
to write your own custom limits
checkers or sequencers.

All of these modules are able to
interoperate because test execu-
tives use well-defined application
programming interfaces (APIs) for
each module. The modules are placed
on natural boundaries between
different types of data and functions
within the test executives.

18 This is a good example of a design
pattern specific to the test and
measurement domain.

48 4. Choosing Your Test-System Software Architecture

You can achieve similar reuse success
in your own code with good archi-
tecture influenced by the natural
boundaries of your software’s func-
tions, types and data. To accomplish
this, put information that changes
frequently, such as the limits for a
test, into a Data File. Put less flexible
elements, such as a test class, into
Types or “classes.” Functions, or
“procedures,” should be reserved for
the least flexible elements.

Design reuse and .NET

While the definitions of the bound-
aries of your software domain are
not specifically influenced by the
programming language or software
environment, some environments
are better than others in helping to
keep your software modular and
swappable.

NET provides software tools that
make it easier to develop a formal
software reuse program within
your department or company. Since
.NET is object-oriented, it’s good at
representing boundaries between
different types of objects, such as
tests or sequencers. Nonobject-based
languages, such as C, require you to
keep track of which functions apply
to which objects, without much
context-sensitive help or compile-
time error checking.

NET also includes improved
versioning and deployment features.
In addition, .NET has the ability

to tell Windows that you will only
accept a certain version of an
external library. This eliminates one
of the common frustrations with
earlier versions of Windows where
you rely on an external library
(DLL), but then the DLL changes and
your software no longer functions
correctly.

Design reuse benefits

In summary, the reasons for imple-
menting a design reuse program
include improved software quality,
increased software development
efficiency, and better use of expert
knowledge.

Design reuse improves quality in

a couple of different ways. First,
software errors are reduced as a
result of the extra architectural
analysis, improved system design,
and flexibility and transparency.
With good reuse policies imple-
mented throughout the organization,
you have access to thoroughly tested
and verified components, reducing
the opportunities for creating new
defects.

Design reuse increases software
development efficiency by reducing
duplication of effort. Components
need to be designed, implemented
and tested only once. Good reuse
practices make it easier to reuse an
existing component as opposed to
re-writing or even re-creating a new
component.

Design reuse takes advantage of an
organization’s expert knowledge.
For example, most software devel-
opers spend time specializing on

a particular set of skills and will
write components based on those
skills. With time, the set of available
components for reuse becomes the
set of the best knowledge of your
organization. The company’s expert
skills and deep knowledge will be
evident in a rich set of reusable
software components.

These benefits are not theoretical.
The Software Engineering Laboratory
at the National Aeronautics and
Space Administration’s (NASA)
Goddard Flight Center achieved
significant benefits by implementing
software reuse in the development
of software products in its Flight
Dynamics Division. According to

the software engineering lab, NASA
realized a 35 percent reduction in
the effort needed to deliver a line

of code, a 53 percent increase in
daily productivity, and an 87 percent
increase in code quality.'®

19 Proceedings of the Sixteenth Annual
NASA/Goddard Software Engineering
Workshop: Experiments in Software
Engineering Technology, Software
Engineering Laboratory, December
1991.

Design reuse summary

Systematic design reuse across your
company requires that your manage-
ment value the extra efforts required
by designing for reuse. Failure to
invest and do the job right the first
time will lead to frustration and
wasted time down the road. One or
more repositories of software compo-
nents must be made available to all
the engineers who will need them.
You also need to be aware of any
copyright or patent limitations of the
code you plan to reuse. For example,
if your software is written under
contract with another company, they
may have exclusive rights to that
code.?

20 Defter, Frank W, et al, “Software
Reuse: Magjor Issues Need to Be
Resolved Before Benefits Can Be
Achieved,” United States General
Accounting Office, 1993, http://www.
defenselink.mil/nii/bpr/bpred/vol2/
272c.pdf.

49

Conclusion

Before you begin writing code for
your test system, you need to make a
number of important decisions about
the system’s software architecture.
You will want to start by creating

a detailed software requirements
specification that defines what you
want the system to do and how it
should operate. The SRS should
include an outline of how you will
gather, store, analyze and present
your data as well as how end users
will interact with your system.

Another important decision you need
to make upfront is which program-
ming environment and language

you will use for writing your code.
Using a standards-based environ-
ment such as Visual Studio .NET
maximizes your flexibility and helps
you prolong the useful life of your
software. By combining Microsoft’s
Visual Studio .NET with Agilent’s
T&M Programmers Toolkit, you can
wrap objects written in a variety of
languages such as Agilent VEE Pro.
This allows you to pull them forward
into your new programming environ-
ment, making the most of your legacy
code investment.

Whether you choose a graphical or
textual environment will depend

on the size and complexity of your
system, your skill set, your company
standards, and the size of your
programming team. The decision
usually comes down to which envi-
ronment—graphical or textual— will
make you more productive. Textual
environments are almost always

the best choice for creating code for
large, high-throughput manufacturing
test systems because they offer the
most power and flexibility, and they
allow faster throughput.

Finally, you need to decide whether
to use an off-the-shelf test executive
or write your own test routines. Test
executives can speed up your test
system development and lower your
costs but will require an up-front
training investment. If you are only
performing a few tests, you may want
to consider writing your own code.

50 4. Choosing Your Test-System Software Architecture

b. Choosing Your Test-System Hardware Architecture
and Instrumentation

Introduction

This chapter explores the hardware
architecture decisions and design
choices you must make before

you begin building your system to
ensure that it provides you with the

performance and flexibility you need.

It also discusses issues you should
consider as you select instruments
for your system.

A test system is essentially a group
of subsystems that work together to
test a particular device or range of
devices. You need to make important
decisions about each of the subsys-
tems before you begin ordering

test instruments or building your
system. The way these subsystems
communicate and interrelate has a
huge effect on the cost, performance,
maintainability and usability of your
system. The time you spend upfront
defining the architecture of your
system is likely to save you time
later that you might spend debugging
software and tracing down the cause
of faulty measurements. Ultimately,
careful planning will help you ensure
accurate testing of your DUT.

When you design a test system, you
need to consider many of the same
issues that architects consider when
they design buildings: esthetics,
safety, heat, size, cost, future expan-
sion, optimal location of parts, and
so on. Once you have decided how
to approach these high-level issues,
your test requirements will guide
you in designing a system for the
range of devices you expect to test.

This chapter explores the system
architecture decisions and design
choices you must make to ensure
your test system provides you with
the performance and flexibility you
need. It also discusses issues you
should consider as you select instru-
ments for your system.

System architecture

The architecture you choose for your
test system will depend on whether
you plan to use it for R&D, design
validation, or manufacturing test. In
R&D, for example, you are probably
performing parametric tests that
will not be repeated on hundreds of
devices under test (DUTSs). In design
validation, you need to be able to
adapt to pinouts that are changing
often, but the speed of each indi-
vidual test is not particularly critical.
In high-volume manufacturing,
you've got hundreds to thousands of
DUTs to test, and you want to test
them as fast and as inexpensively

as you can. The architecture of

your test system will be different in
each of these situations. In an R&D
environment, you might not use all of
the subsystems listed below, but for
design validation, production valida-
tion or manufacturing test, typically

Figure 5.1. A generic test-system architecture

System controller

Power sources

Analog Digital Power

Measuring/stimulus

Interfaces: instrumentation

LXI, VXI,
FireWire, MXI,

USB, LAN, PXI
DUT-specific
connections

Switching

you will need to make decisions
about six major subsystems (see
Figure 5.1):

¢ Instrumentation (measuring and
stimulus instruments)

Computing (computer, software
and I/0)

Switching (relays that interconnect
system instrumentation and loads
to the device under test, or DUT)

* Mass interconnects (DUT-to-system
wiring interface)

* Power sources (power to the DUT)

¢ DUT-specific connections (loads,
serial interfaces, etc.)

The test engineer’s challenge is to
choose these subsystems carefully
and put them together efficiently.
Let’s look at each of the subsystems
individually.

Mass interconnect

¢« + 4 o+ 4

Device under test (DUT)

51

Instrumentation type: rack-
and-stack or cardcage?

There are two major types of instru-
ments for test systems, rack-and-
stack and cardcage. Rack-and-stack
instruments are standalone test
instruments that can be used inde-
pendently. For test systems, they are
frequently stacked in a rack (hence
the name) to save floor space, and
typically, engineers use external PCs
to control them. Newer LXI instru-
ments often come in both traditional
rack and stack formats as well as in
smaller modular formats.

Cardcage instruments

Cardcage instruments, as their name
implies, are modular test instru-
ments on plug-in cards. You insert
the cards in a cardcage, or main-
frame, and control them either with
an embedded controller (a plug-in
card that is a PC) or an external PC.
Card-cage systems are often mixed
with rack-and-stack instruments to
provide all the functions needed in a
test system.

VXI is a standard, open architecture
for cardcage systems that allows
instruments from different manu-
facturers to operate in the same
mainframe (see Figure 5.2). The
VXIbus (VMEDbus eXtensions for
Instrumentation) was developed by
a consortium of test-and-measure-
ment companies to meet the needs
of the modular instrument market.
The VXI standard was patterned
after the VMEbus standard, but it
was defined specifically as a new
platform because VME did not meet
the needs of the instrument commu-
nity, particularly with respect to
noise rejection and triggering. VXI
instruments typically offer more
performance and speed than other
instrument types.

Another cardcage architecture is
called PXI (PCIbus eXtensions for
Instrumentation). While PXI cards
are very small, they typically lack the
accuracy and performance of VXI or
rack-and-stack instruments. If you
are considering using a PXI system,
be sure to investigate whether you
will need to purchase additional
signal-conditioning equipment. Also,
PXI is based on a PC backplane with
no electromagnetic interference
(EMI) or cooling specs, and therefore
it is not as well suited to be a quiet
measurement environment. Note
that PXI is also transitioning to PXI
Express, so be sure to look at your
needs in the future to determine

if you should purchase a hybrid
PXI/PXI Express cardcage. See

the sidebar on page 54 to compare
attributes of PXI, VXI and rack-and-
stack systems.

Another cardcage architecture is
compact PCI (CPCI). CPCI technology
is the basis for PXI, although PXI
adds triggering options not available
in PCI. CPCI and PXI cards can be
interchanged to some extent. CPCI
cards tend to be used in industrial
PCs, because they are rack mount-
able and more rugged than other
card types.

Figure 5.2. VXI mainframe with modular test instruments on plug-in cards

e
s
(11]
(1K]

]
©® a

loJoJolojololofo,

J

_}

Y

Slot 0 interface
and control

InstrumentT
modules

52 5. Choosing Your Test-System Hardware Architecture and Instrumentation

Mainframe provides
communication,
power and cooling

Racked instruments

Racked instruments can take up
more space than cardcage instru-
ments, but typically they are less
expensive because they are produced
in higher volumes. It is easy to

find high-quality, high-reliability
standalone instruments that are
suitable for use in systems. Lately,
test-equipment manufacturers have
been putting more thought into how
their standalone test instruments
work in a system environment,
making rack-and-stack architecture
easier to implement. Agilent, for
example, offers “system-ready”

test instruments that incorporate
standard protocols and optimized
features like shielding, filtering,
high-speed I/0 and on-board intel-
ligence and memory. Also with the
large percentage of hybrid (cardcage
plus rack-and-stack systems) and the
introduction of LXI modular rack
and stack instruments, there are
more choices to optimize space vs.
usability.

There are many benefits of using
system-ready rack-and-stack
instruments in your test system.

For example, they can reduce your
system development time because
troubleshooting a system is easier
when you use instruments that are
capable of standalone operation. You
can use an instrument in standalone
mode to run preliminary checks

to ensure you are getting good test
results before you have the entire
system set up. You cannot do the
same with cardcage instruments, so
it is more difficult to differentiate
between hardware and software
problems.

In some organizations, using a
standard set of racked instruments
throughout the product lifecycle

can lower the barriers to effective
communication and cooperation
among organizations with different
responsibilities. For example, R&D
engineers may use benchtop instru-
ments as they develop and fine-tune
product designs. When they turn to
design validation testing—or in the
case of larger organizations, when
they turn their pre-production proto-
types over to the design validation
department— it is helpful to use the
same instruments, even though the
tests are more likely to be automated
or semi-automated at the design
validation stage. If it is the same
engineer doing the validation testing,
he or she is already familiar with
instrument operation and already
trusts the test results the instru-
ment generates. If R&D and design
validation are handled by different
engineers or different organizations,
using the same test instruments can
facilitate effective communication
and shared problem solving. You get
the same benefits if you use the same
test system architecture when the
product moves to manufacturing.

Making a choice

The decision you make about which
instrument architecture to use will
be influenced by several factors.

If you are building a system from
scratch, you will want to look at
overall system performance and
cost. However, if you already have a
collection of either rack-and-stack or
cardcage instruments, reusing them
and adding to your collection may
be more cost effective than starting
over. Also important is whether you
have access to rack-and-stack or
cardcage systems-building expertise.
If all the expertise in your company
is with cardcage architecture, it may
not make sense to switch to rack-
and-stack, even if the equipment
cost is less. If you decide to stay with
an existing cardcage setup for your
system, you may want to consider
migrating to a hybrid system, adding
rack-and-stack instruments to gain
the capabilities or performance you
need. You will need to evaluate the
specific circumstances to make the
best decision.

Another factor to consider is the cost
of maintaining your system. Look
into typical repair costs and the cost
of keeping spare parts and extra
instruments/cards on hand.

“Choosing instruments for your
system” on page 59 offers more
detailed information about choosing
the right instruments for your
system.

53

54

Comparison of instrumentation types

Rackand VXI CPCI PXI See notes:
stack
Standalone use Yes No No No 1
Accuracy rwn wax *x x)
Price $S $SSS $SS $SS 3
Burst speed *hpg HEEE xwr P xxxx 4
Single-point o rxx x x 5
measurement speed
GUI response time - . o . 6
Footprint *x *x P P 7
_Ease of use and . * * * 8
integration
Shielding . wax * * 9

1. Standalone use

With an internal PC, a cardcage can
operate standalone, but you need a
monitor if you require an operator GUI.
Cost of an embedded PC is several times
that of a standard PC. In any case, card
cages generally require some form of
computer communication in order to be
useful, while rack-and-stack instruments
can be used to check out the system
without a computer present.

2. Accuracy

Cardcages have power supplies that
must be shared among several subsys-
tems. Rack-and-stack instruments

are optimized to one use, so they are
designed to have the right power supply
for the job at hand, and analog circuitry
that is not subject to cage-imposed
restrictions. Rack-and-stack instruments
are designed to minimize magnetic inter-
ference so they are less likely to induce
currents that would disrupt sensitive
instruments. As a result, rack-and-stack
systems typically outperform cardcage
systems in terms of accuracy, crosstalk,
noise, and other factors.

3. Price

Cost of a bench-top system is usually
lower when instruments are not
rack-mounted. When instruments are

rack-mounted, system cost depends on
the configuration of the rack.

4. Burst speed

Burst speed is the speed at which the
instrument can move a large amount of
data from a single channel across some
bus or I/0 port to the computer. Burst
communication is used in data acquisi-
tion more than it is used in functional
test. Cardcages typically shine in this
arena, although recent improvements
in 1/0 speed, such as the adoption of
fast LAN, have blurred the distinction
between backplane and external /0.

5. Single-point measurements

Single-point measurement speed is the
time it takes to make a single measure-
ment, switch channels and then make
another measurement. This is the
predominant mode used in functional
test. You'll find more information

about test-execution speeds in the
“Measurement speed” section on

page 60.

6. GUI response time

When a cardcage communicates to

the PC, the PC must often do double
duty as it processes the data and also
updates the GUI. In some rack-and-stack
instruments, these operations happen in
parallel, giving the operator more real-

5. Choosing Your Test-System Hardware Architecture and Instrumentation

time update capability. This is especially
true with an oscilloscope, where lack of
immediate feedback can be annoying.

7. Footprint

PXI and CPCI systems have the smallest
footprints. However, many instrument
functions are not fully realizable in PXI,
so engineers typically adopt a hybrid
approach of rack-and-stack plus PXI
instruments. Once you have a rack for
part of your system, you use the same
amount of floor space as you would for
a full rack-and-stack system, so you lose
the space-saving advantage offered by
the small form factor of the PXI cards

8. Ease of use and integration

If a racked system has been designed

to accommodate a reasonable amount
of expansion space (a good idea to plan
for unforeseen future needs), adding
instruments to a rack is not a lot more
complicated than adding an instrument
to a cardcage. A more important consid-
eration is the ease of adding additional
cables to an existing architecture. For
example, whether you use a cardcage or
several racked instruments, their inputs
and outputs are usually connected into
a switching system or a mass intercon-
nect. If the system has been designed to
handle such new instruments, integra-
tion will only take a few minutes. If the
system has to be redesigned to handle
the new instrument, it can take days.

9. Shielding

Dedicated rack-and-stack instruments
are typically well shielded. Since they
are designed for a specific purpose, they
are frequently more noise-free than their
card-cage counterparts. VXI has specific
shielding specifications, and these are
lacking in PXI and CPCI. While it is
possible to shield PXI, the implementa-
tion is left up to the vendor, so placing

a new vendor’s product in a slot may
result in unwanted interference with
nearby instruments.

The computing subsystem

Before you consider the ques-

tions surrounding the computing
subsystem, you need to decide
whether you will control your system
manually, semiautomatically or with
a fully automated control system.
These issues are addressed in
Chapter 1, Introduction to Test-
System Design. The information in
this computing subsystem section is
for test engineers who have decided
to use either automated or semi-auto-
mated control.

For systems that use rack-and-stack
test instruments, you will most likely
use an external or racked PC that is
cabled to the instrumentation. For
test systems that use card-based
instruments, you need to decide
whether to use an embedded PC
(one that fits inside an instrumenta-
tion cardcage) or an external PC. At
first glance, the embedded PC may
seem like a good choice. It fits inside
an existing cage, so it uses rack
space efficiently, and it is directly
connected to the backplane, so

data transfer speeds are excellent.
Unfortunately, embedded PCs cost
a lot more than external ones, and
typically they do not have room to
hold many modern peripherals.

The technology used in embedded
PCs tends to lag the technology of
the general computer industry, so
embedded PCs often are at least a
generation behind in processor type
and speed.

If you use an external PC, you will
get more computing power for your
money. In addition, most external
PCs come with industry-standard
interfaces like LAN, USB and
FireWire built-in. If you use a PC
with these interfaces, you can lower
the cost of your test system by using

test instruments that support these
interfaces, or shorten setup time
by using USB/GPIB or LAN/GPIB
converters. This topic is covered in
detail in Chapter 2, Computer I/O
Considerations.

In manufacturing environments, cost
is typically a critical concern, espe-
cially when you are implementing
hundreds of identical test systems.
The lower initial cost of external PCs
typically makes them a better choice
for manufacturing test systems, and
the fact that they are typically less
expensive to service than embedded
controllers adds to their appeal. 1U
or 2U rack-mountable PC controllers
are now available that can be a good
trade of size and cost.

Another major computing consid-
eration is the choice of software
and application-development and
runtime environments. Computing
subsystem decisions related to
software are covered in Chapter 4,
Choosing the Test-System Software
Architecture.

Switching

Switches, or relays that interconnect
system instrumentation and loads

to your DUT, are an integral part

of most automated test systems.
Choosing the proper switch type
and topology will impact the cost,
speed, longevity, safety and overall
functionality of your test system. For
a thorough examination of switching
in test systems, see Application
Note 1441-1, Test System Stgnal
Switching.

The types of relays you choose

for your low-frequency switching
subsystem are important, as they
affect the type of circuits and
systems you can test. Reed relays
and FETs are the best choice for
high-speed systems, and of the
two, reeds have higher voltage and
current ratings. Reed relays are

excellent choices to connect measure-
ment instruments and low-current
stimulus to the DUT. They are very
fast (typically about 0.5 to 1.0 ms),
although they can have a higher
thermal offset voltage than armature
relays. Use armature relays (which
typically switch in 10-20 ms) for
higher-current loads. When you use
armature relays, group your tests so
the relays stay connected to perform
as many readings as possible at one
time. Because armature relays are
relatively slow, you will want to avoid
connecting and disconnecting them
multiple times.

Switching topologies can be divided
into three categories based on their
complexity: simple relay configura-
tions, multiplexers and matrices.
The best one to use depends on the
number of instruments and test
points, whether connections must be
simultaneous or not, required test
speed, cost considerations and other
factors.

A matrix arrangement of reed relays
provides an excellent way to allow
any instrument to be connected to
any pin on your DUT, and it permits
easy expansion as you add new
instruments to your system or more
pins appear on your DUT. Matrices
use more relays than multiplexers, so
they tend to cost more. If you don’t
need to connect multiple instru-
ments to any pin, a multiplexer is a
suitable solution. If you have a 1 x
20 multiplexer for example, you can
connect a test instrument to 20 pins,
but you can’t hook anything else to
those 20 pins. With those same 20
relays in a matrix, you can connect
four instruments to five pins in any
combination.

55

In manufacturing test and design
validation systems you often need
banks of general-purpose relays

of varying current capability. You
can use such relays to connect DUT
inputs to ground or to a supply, or
through resistors to simulate dirty
switches. You also can use them to
provide ways to disconnect output
loads in order to allow parametric
tests on output transistors, as shown
in Figure 5.3.

You also need to think about where
to place and how to arrange your
switches. While relay cards can be
placed in a cardcage that is intended
for high-performance instruments, it
is a waste of valuable real estate. The
high-speed backplane in a modular
cage is more suited to the control

of high-speed instruments, not
simple relays. If you place relays in
a separate box that is tuned for that
purpose, it will be easier to expand
the high-performance instrumenta-
tion while allowing room separately
for denser relay cards, more relay
cards or a bigger switchbox. It

also makes a clearer delineation
between the instrumentation and
the switching subsystems, which
makes it easier to keep your system
organized.

Placing the DUT interface panel
(mass interconnect or feedthrough
panels) in front of a switching
subsystem that has the plug-in cards
facing the interface panel accom-
plishes two goals: 1) It minimizes
rack space, because the switchbox

Figure 5.3. Switched loads allow parametric measurements

and mass interconnect are in the
same plane, and 2) it reduces wire
length from the switching to the DUT.
If the box you choose has cards in the
rear, reverse-mount the switchbox
using the rails on the rear of the
rack, as shown in Figure 5.4. There
are two negatives to this approach:
the front panel of the switching
instrument is not accessible from

the front of the system, and it can be
harder to reach the plug-in cards for
service. However, once a system is
operational, it is seldom necessary

to operate a switchbox from its front
panel, and cards can be accessed by
pulling the instrument out the back
or by removing the side panel of the
system.

Figure 5.4. Rear-mounting the switching
subsystem reduces rack space and minimizes
cable lengths

Switch in load
for powered test

Typical DUT
outlet driver \
MOSFET with

zener protection

\Y%

Measure protection
zener using current source

Measure leakage
current using
voltage source

o/o Load |— 12v

¢

_©

Current sense
/ resistor

ﬁ ?Q

56 5. Choosing Your Test-System Hardware Architecture and Instrumentation

a

Tips for successful
switching

1. Place system switching in a box
dedicated for that use, such as the
Agilent 34980A switch/measure

unit or the 34970A data acquisi-
tion/switch unit. Placing all system
switching in one place minimizes
cost and helps to keep your system
organized. Allow enough room to
expand the switchbox to a larger size
or to provide room for another one as
your needs grow.

.Inside the switchbox, create an
instrumentation matrix. For example,
create a 16 x N switch matrix,
connecting instruments to the 16
“rows”, and your DUT to the “N”
(column) side, allowing one matrix
column per DUT pin. By making N
an expandable number, in incre-
ments of, say, 16 or 32, you can
handle modules that are close to
your immediate needs with a way
to easily expand to higher-pin-count
modules in the future. When you
need new instruments, simply
connect them to a new set of rows.
No additional wiring is needed.
Since most instrumentation is low
current and must be scanned across
multiple points quickly, choose fast
reed relays or FET switches for this
architecture.

3. Also inside the switchbox, allocate

a set of general-purpose relays for
power supply and load connections.
These relays are generally too big
to allow economical creation of

a high-current matrix that could
programmatically assign any DUT
pin to any load. Therefore, bring
such relay connections out directly
to an interface panel where they
can be connected to the appropriate
pins. When you are designing the
switching for your test system, you
may want to build in some safety
features. Particularly if you are
working with high voltages or high
currents, you might want to include
a switch to disconnect all signals, to
minimize the chance for potentially
serious accidents.

Mass interconnects

A mass interconnect panel is a
DUT-to-system wiring interface that
allows you to use fixtures instead of
wiring each connection separately.
When you are designing a functional
test system for a design lab, it is
tempting to leave out a mass inter-
connect, since the product design
changes so much and the extra time
to rewire a fixture is not productive.
It also is not as likely that you will
make identical measurements on
large numbers of devices. Simple clip
leads may suffice, especially for small
DUTs. Interface panels are relatively
expensive—using one can easily
double the cost of a system— but
there are a couple good reasons for
adding one to your design-validation,
production-verification or manufac-
turing test system:

¢ A mass interconnect provides a
physical location for mounting
interface components such as
terminal blocks, fuses, custom elec-
tronics/interfaces/conditioning,
etc., between the system and the
DUT. You can mount these compo-
nents either to the interface frame
or to a shelf attached to the frame.

Device measurements are less
likely to change due to random
movements of wires.

Using terminal blocks on the inter-
face makes it easy to make wiring
changes as the DUT changes,
allows easy connection of multiple
resources to common points, and
provides easy test connections for
debugging the system.

For design validation, production
validation and manufacturing test,
mass interconnects are typically well
worth the investment. They provide
a fast and robust means of changing
connections to different DUTs using
the same system.

You can obtain more information
about mass interconnects from the
three major manufacturers: Virginia
Panel, MAC Panel and Everett
Charles Technologies/TTI Testron.

Power sources

DUT power is an integral component
of a test system, whether it is a
simple bias supply or an advanced
system power source. Depending

on your application, your DUTSs can
require anything from a few milli-
watts to many kilowatts. There are
many power supplies available for
providing power to a DUT. Choosing
the right one is more complicated
than simply picking the right voltage
and current level.

Testing your DUT will be a lot less
frustrating if you choose a reliable
system power source that provides

a stable voltage source to power

the DUT and built-in measurement
capability to verify DUT performance
under various operating conditions.

When you select your DUT power
source, consider the following:

* Number of outputs needed
* Settling time

¢ Qutput noise

* Fast transient response

* Fast programming, especially
down-programming response

* Remote sensing—compensate for
voltage drop in wiring

57

Built-in, accurate, voltage and DC
current measurement or waveform
digitization

Small size—it’s possible to get
linear performance (low noise) out
of a switched power supply to free
up rack space

Triggering options

Programmable output impedance

Multiple outputs and sequencing of
outputs

Over-voltage protection

Over-current protection

Lead lengths

Safety due to exposed voltages

Your choice of supply can dramati-
cally impact system throughput,
since waiting for power supplies to
settle can be one of the most time-
consuming elements in a typical test
plan.

DUT-specific connections

Many DUTs require components to be
connected to their outputs in order
to adequately stress the unit (Figure
5.5). These can take the form of resis-
tive or reactive output loads such as
resistors, light bulbs or motors, or
complicated, simulated loads such as
the dynamically varying current in

a camera battery. In most cases, it is
wise to provide a place to put such
loads in a system, such as a slide-out
tray on which small, discrete loads
can be mounted. Some DC-program-
mable loads (the size and shape of a
power supply) can be rack mounted.
Such loads are often connected to
the DUT through relays to allow the
DUT to be completely disconnected
from all test system resources. If you
decide to use relays, locate the loads
close to the switching subsystem to
minimize cable lengths.

Other architectural
considerations

In addition to the foregoing deci-
sions, make sure your planning also
takes into account AC power distri-
bution, cooling, ergonomics, safety,
and future expansion.

AC power diistribution

If you are designing a system that
you expect to replicate and ship to
areas of the world that have different
power requirements, you will prob-
ably want to include a power distri-
bution unit in your system to make it
easier to convert to the appropriate
scheme. Power distribution units
give you a way to route power, detect
power line problems, and filter the
input, and they provide the potential
for adding uninterruptible power
supplies and an emergency off (EMO)
switch input.

Cooling

If you do not pay attention to cooling,
temperatures in a rack can easily
exceed environmental conditions
specified for your test instruments.
When this happens, your instru-
ments can fail prematurely and

your measurement results can be
jeopardized. Temperature gradients
are also something to consider. If one
end of the rack is ten degrees hotter
than the other end, even if the overall
temperature is within instrument
specifications, the resulting gradient
can cause some unwanted thermo-
couple effects or slow drift errors.

You can use extractor fans to draw
air through your system to remove
heat. If you cannot create enough
airflow to remove the heat with a
fan, you may need to consider air
conditioning your rack. There are
standard NEMA enclosures that can
be used for this purpose.

If you are using rack-and-stack test
instruments, it is important to think
through how you place the instru-
ments in the rack. Test instruments
typically pull air in on one side or
through the bottom and exhaust

hot air out the other side or the

top. Be careful not to position an
instrument’s air intake adjacent to
another instrument’s exhaust vent.
You will find more information about
racking test instruments in Chapter
6, Understanding the Effects of
Racking and System Interconnections

Figure 5.5. Simplified diagram showing ways you can connect loads in various configurations. A
“bridge load” connects a load between two pins on the DUT, rather than between an output and

ground or an output and power.

DUT pins O Terminal block connections

T T

Current
sense
resistor |

—|< Power supply +
—I< Power supply —

Lk

Example of a bridge load

58 5. Choosing Your Test-System Hardware Architecture and Instrumentation

Ergonomics

As you make decisions about your
system architecture, keep in mind the
operator’s comfort and convenience.
Provide adequate work space at the
correct height, depending on whether
the operator will be sitting or
standing. Put displays at a comfort-
able height and if appropriate,
provide the ability to tilt the display
to reduce glare and eyestrain. Make
sure illumination is adequate for

the tasks that need to be performed.
Provide for left-handed and right-
handed operators by allowing a
mouse to be placed on either side of
the keyboard.

Safety

If you are working with high voltages,
consider using interlocks to prevent
accidents. Take precautions to deal
with static electricity. For moving
parts that could cause bodily harm,
consider using deadman switches
(two switches, both of which must be
engaged for the equipment to run)
and EMO switches (a single switch
to turn off the entire system in an
emergency). Position heavy equip-
ment low in the rack and watch how
you distribute weight in the rack to
prevent it from tipping over. Also
consider how weight distribution
would change if you were to remove
an instrument for maintenance.

Future expansion

To maximize the re-usability of a
functional test system, you need to
design it in such a way that in the
future it will be able to accommodate
more instruments, more switches
and bigger DUTs that require more
power, without a complete re-design.
To maximize your long-term flex-
ibility, use open standards whenever
possible. Make sure to allow 20
percent to 30 percent extra room

in a cardcage, or 20 percent extra
room in your rack to accommodate
instrument additions. See Chapter 1,
Introduction to Test-System Design,
for more ideas about planning for
future expansion.

Choosing instruments for
your test system

The measurement and stimulus
instruments you choose for your
system—whether they are rack-and-
stack instruments or instruments on
a card—will be driven largely by the
functional and parametric tests you
need to perform, and whether you
are using manual, semi-automated or
fully automated control for your test
system.

Identify your needs

In all cases, it is wise to start by
making a thorough list of the inputs
and outputs of each of the devices
you plan to test and the parameters
you will measure. Note the accuracy
and resolution you need for each
measurement as well. Once the list
is complete, check to make sure

it does not contain redundant or
unnecessary tests. Then identify
possible test instruments for the
required measurements and look
for opportunities to use the same
piece of test equipment for multiple
measurements.

The types of instruments you need
will vary depending on your appli-
cation. However, there are several
universal questions that you must
answer in order to select measure-
ment and stimulus instrumentation

properly:

1. AC stimulus. How many dynamic
(AC) signals do you need to apply
simultaneously? This determines
the number of channels of arbi-
trary waveform or function/signal
generator you require.

2. DC stimulus. How many static
(DC) signals to you need to apply
simultaneously? This determines
the number of channels of DAC
(digital-to-analog converter) you
will require.

3. Measurements. What types of
measurements do you need to
make, and how many simultane-
ously? If minimizing instrumenta-
tion costs is essential, look for
ways to minimize the number
of instruments you need by
paying attention to the ancillary
functions of instrument that
might perform double duty.

For example, you can perform
RF power measurement with a
spectrum analyzer if accuracy
and speed are not critical to your
application. If you only need to
know the power supply voltage
within 0.5 percent, you might be
able to use the internal voltmeter
inside your power supply, using
the read-back mechanism to read
voltage on terminals.

4. Protocols. Do you use any special
serial data protocols? This deter-
mines the need for instruments
to handle things such as CAN,
ISO-9141, J1850 and many more.

Once you have made your measure-
ments list and answered these initial
questions, you can refine your list of
instrument possibilities by looking at
your budget and time constraints and
your requirements around measure-
ment speed.

Development time

When you are choosing instru-
ments for your test system, look for
instruments that will minimize your
development time. You can save time
by using rack-and-stack system-ready
instruments that incorporate a high
percentage of the measurement
solution you need. For example, if
you use a source with modulation
capability, you don’t have to develop
your own algorithm or integrate
additional hardware to generate the
required modulation.

59

If you want to minimize hardware
costs, you can investigate auxiliary
capabilities. However, if your goal

is to minimize development time,
buy instruments that are specifically
designed to do the jobs you need
done. Using instruments with IVI-
COM drivers can save you develop-
ment time. If the instrument has an
IVI-COM driver, you can interchange
hardware without rewriting your
software, as long as you adhere to
the functionality that is specific to
the instrument class. See Chapter 3,
Understanding Drivers and Direct
I/0, for to learn how decisions about
drivers affect development time.

Test instruments with download-
able personalities also can save you
development time. You download
the measurement personalities for a
specific application directly into the
test instrument’s internal memory.
Then you can simply choose from a
menu of tests, and the personality’s
“intelligence” automatically performs
the tests, from capturing signals

to displaying results. Agilent spec-
trum analyzers, for example, have
measurement personalities for
testing cable TV, phase noise, cable
fault, Bluetooth™, cdmaOne, GSM/
GPRS, as well as a variety of other
wireless protocols and modulation.

New LXI instruments from Agilent
allow instrument monitoring from
the instrument web page. This allows
monitoring of the instrument state
from the same computer screen as
your test program. The web page is
also a useful debugging tool.

You typically spend a large
percentage of total development time
on debugging your system, particu-
larly if you are building a new test
system. You can reduce your debug
time significantly by writing a diag-
nostic test routine that loops outputs
back to inputs through a large part of
the switching path. This exercise will
help you quickly identify the cause of
problems— whether it is a source, a
measurement instrument or a switch
path.

For more ideas on minimizing your
development time, see Chapter 4,
Choosing Your Test-System Software
Architecture.

Measurement speed

If you are building a manufacturing
test system (and to a lesser extent in
design validation applications), the
time it takes to execute each test can
be critical. But figuring out how fast
your system will perform measure-
ments is harder than it appears. For
example, a digitizer may be able to
sample 1000 readings very fast, but
if those readings are transferred to
the PC over GPIB, it could take a long
time. A digitizer that can have a deci-
sion-making algorithm downloaded
into it could allow a simple go/no-go
result to be sent back to the PC,
which would make GPIB a reasonable
option and may save money over a
cardcage-based solution. However,

it takes extra effort to create and
download a decision algorithm into
an instrument, which may increase
development time as well as “first-
run” time of the test program. Also,
inside an instrument the readings
will be analyzed by a much slower
processor than the one in the PC, so
this must be factored in as well.

Simply reading the data sheet does
not tell the whole story. Maximum
reading rate specifications are
usually related to burst speed (see
Figure 5.6); that is, the speed which
you can sample the signal on a
single channel. But that is not the
typical mode for functional test. In
functional test, the system normally
makes a single measurement, then
changes a parameter like range or
function or channel, and then makes
another measurement. In this case,
the burst rate is meaningless. Take
for example, two multimeters—one
LXTI and one PXI. Note that both
multimeters can perform up to
10,000 measurements/second

or more in burst mode, but their
single-sample measurement speed
is much slower due to the transac-
tion overheads of controlling each
measurement. Even a high-speed bus
such as PXI makes little difference
to the readings/second because the
total time is dominated by the setup
and measurement time.

Figure 5.6. Burst speed can be misleading; since single-sample measurement speeds are usually

significantly lower.

A. DMM multi-sample measurement speed
4.5 digits, no switching (readings/sec.)

30,000
25,000
20,000
15,000
10,000

5,000

LXI DMM PXI DMM

60 5. Choosing Your Test-System Hardware Architecture and Instrumentation

A. DMM single-sample measurement speed
4.5 digits, no switching (readings/sec.)

350
300
250
200
150
100

50

LXI DMM PXI DMM

At higher resolutions, burst rate
again becomes moot, since actual
reading rates are a function not only
of DMM sampling times, but also of
relay switching times. Since such
reading times can be generally less
than 10/s, these readings tend to be
done only when the extra resolution
is absolutely necessary.

For a discussion of how data transfer
rates over different interfaces affect
your system’s overall measurement
speed, see pages 23-24 in Chapter 2,
Computer I/O Considerations. For

a detailed look at ways to maximize
your system throughput, see Chapter
7, Maximizing System Throughput
and Optimizing System Deployment.

Choosing a vendor

The proper design of instrumenta-
tion requires attention to minutiae.
Choose an instrument manufacturer
who has been through the learning
process and knows how to minimize
system noise and maximize accuracy
and throughput.

Simple systems are one thing, but
when you put several instruments
together, strange things sometimes
happen. That’s when it’s nice to have
local support and service. Choose a
vendor who can help you with issues
like repeatability, system noise,
calibration and drift.

If your vendor can supply
specifications that apply to a whole
subsystem—like a central switch— it
will save you the time and trouble of
trying to add all the specifications of
a multitude of vendors together to
divine what the true accuracy of your
system might be.

Calibration can be an expensive and
time-consuming part of building a
system. Make sure you don’t have to
ship your system halfway across the
world to get it calibrated. Calibration
is especially important in the world
of RF and microwave, so make sure
your vendor’s support organization
can handle your needs.

Example test system

To illustrate the concepts and issues
discussed in this chapter, we will
design a test system (see Figure 5.7)
from scratch that can be used to test
low-frequency, low/medium-pin-
count, low/medium power electronic
modules. These devices are typical
of the automotive and aerospace/
defense industries.

Figure 5.7. Functional test system

PC (can behind PC)
Optional 2nd DMM
Function generator

Scope with
CAN trigger module

Switchbox located
directly behind
interface panel

VXI cage with
FireWire, digitizer,
DAC, and DMM

Room for expansion

Power supply

61

Make architectural choices

Table 5.1 shows the architectural
choices we made for this test system.

Design the system

Now, we will apply the architectural
decisions to a system for testing an
electronic throttle module for an
automotive throttle body. According
to the test specification, the following
equipment is required to run the tests:

* Programmable volt/ohm/ammeter

* Programmable power supply—
0-13.5V/0-10 A

* Waveform generator capable of
pulse-width modulation, 0-10 VDC,

¢ Low current DC voltage source
(0-5 VDC)

* Waveform analyzer
¢ CAN interface

¢ Simulated or actual stepper motor
load

The DUT has 14 pins total on 3
connectors. Looking at various
catalogs, and adopting the architec-
ture specified earlier, we chose the
instruments shown in Figure 5.7.

There are three LXI instruments—
the power supply, switchbox, and
oscilloscope. We will use an 8-port
LAN hub providing extra ports, thus
“future-proofing” the system. Table
5.2 lists the instrumentation used in

Our system uses many I/O interfaces:
LXI (LAN), RS-232C, FireWire and
GPIB. Using Visual Studio.NET with
IVI-COM and VXIplug&play instru-
ment drivers along with VISA I/O
libraries, the control program can
communicate easily with instruments
on all of these interfaces. In fact,
should an instrument’s I/O interface
ever change (say from FireWire to
LAN), all that will have to change

in the program is the initialization
string. It is also possible to specify
use of an aliased name to eliminate
the hard-coding of I/O addresses.

Figure 5.8 shows how the instru-
ments will be connected to the
switching subsystem. We are using
a matrix, so any instrument can be

0-3 KHz

this sytem.

Table 5.1. Architectural decisions for sample test system

Subsystem

Instrumentation (measuring
and stimulus instruments)

Decision

Mix card-based and rack-and-stack instrumentation

+ Use VXI for higher-speed DMM, multi-channel
DACs, and digitizer

» Use rack-and-stack for other test instruments

connected to any DUT pin, and we

Reason
Most cost-effective solution; helps optimize system

Maximize system speed; digitizer not available as
rack-and-stack instrument

Accuracy, ability to prototype system before writing code

Allow about 20%-30% extra rack space for
rack-and-stack instruments

Allow for future expansion

For card-based instruments, leave either 20%
expansion room in the cage, or room in the rack
for a bigger cage

Allow for future expansion (expected need for bigger
switchbox and/or more power supplies)

Use a rack with a top-exhaust cooling fan
access anywhere in rack

Hot air rises, and top fan does not interfere with

Computing
(computer, software and 1/0)

Use an external PC, not an embedded PC

Lower cost, standard interfaces

Use only industry-standard interfaces

Easier support

Use FireWire interface to control VXI instruments

For speed

Use Microsoft Visual Studio.NET software

Rapid development

Switching

(relays that interconnect system
instrumentation and loads to the
device under test, or DUT)

Place switching into a separate subsystem

Separate cardcage-based switchbox houses
low-data-rate instruments more cost effectively

Use a matrix switching architecture for measurement
instruments and low-current stimulus

Ease of expandability, more flexibility in where
instruments can be connected

Mass interconnect
(DUT-to-system wiring interface)

Place the DUT interface panel (mass interconnect
or feedthrough panels) in front of the switching
subsystem

Minimize cable length, save rack space

Power sources (power to the DUT)

Use high-current power supply and allow room for
more than one in the rack

DUT requires high current. Bigger DUTs are
expected from R&D in the future

Consider a modular power source

Greater flexibility

DUT-specific connections
(loads, serial interfaces, etc.)

Connect high-current DUT pins to general-purpose
relays that can be wired to power supplies and loads

Ability to disconnect loads from DUT to allow other
measurements to be made on those pins

62 5. Choosing Your Test-System Hardware Architecture and Instrumentation

can add new instruments easily by
expanding the number of rows and
columns. All connections to the DUT
except for the CAN bus are switched,
making it possible to measure conti-
nuity from pin to pin. We are using a
star ground to avoid ground loops.

A mass interconnect is an option for
this system. This particular DUT only
has 14 pins, so in an R&D or design
validation environment you may not
require the flexibility provided by
such an interface. If the number of
pins is small, simply bringing them
directly out of the switchbox to DUT
connectors may be sufficient. In the
future, if the modules you are testing
have more pins, or if you need a
place to put other things between

the system and the DUT, you may
need a commercial mass interconnect
solution. Therefore, we will provide a
space directly in front of the switch-
box for such an interface.

We chose a 5-wire measurement bus
because it allows all four leads of the
DMM to be connected to different
pins on the DUT, making 4-wire ohms
measurements possible. We routed
two matrix points to the same pin

on the DUT (as shown in Figure 5.8
on the Potl and Pot2 Gnd pins), to
make the resistance measurement
very accurate, since the remote sense
location is made right at the DUT. If
you don’t use two wires, you can still
make a 4-wire ohms measurement
inside the relay matrix, which in
some cases may be good enough. The
fifth bus wire is connected perma-
nently to the star ground, and so it
serves as a common reference for
any single-ended devices, such as the
oscilloscope, or for floating devices
that can be connected to ground,
such as the function generator,
digitizer, DAC and DMM.

When you use a matrix, you can
connect multiple signal sources to
the same pin. It is important not

to accidentally short such sources
together. Switching routines should
be carefully written to either
eliminate this possibility or to offer
warnings when improper conditions
occur.

Figure 5.8. Block diagram of system

If you need to power up and run the

DUT in full-functional mode, you may
need to modify the test system either
with more instrument busses or with

more devices connected directly to
the DUT. You must carefully analyze
the type of testing that is required
and plan accordingly.

(CAN trigger module) 1 i |
| TN p— : Pot2 Wiper e
T Pot2 Vref =
2 !§~ Pot2 Gnd =
F Pot1 Wiper ™
III* & Pot1 Vref
Pot1 Gnd
—> Mlsx::p?g Brake
n—, | Accel
DAC 11 | Mot —
o |
Digitizer |
VXI | Pwr Gnd
1a 1b VBatt
/77 2a 2b
Load tray 3a 3b DUT - electronic
_ 4aO/C ab throttle module
1
I — Sense ba 5b
PS —+ sao/g Bb l
| + Sense 7&10/C 7h 1 Mass
: inter t

Table 5.2. Instrumentation decisions for sample test system

Instrument

Rack-mountable arbitrary waveform/
function generator

Need to generate PWM signals inexpensively

Heavy-duty power supply

Module requires 10A of inrush current

Optional DMM

Debug

Oscilloscope with CAN trigger module

Monitors signals including CAN traffic

Dedicated switching cardcage (“switchbox”)

Separate cardcage-based switchbox houses

low-data-rate instruments more cost effectively

4-slot VXI cage containing:

* Digitizer
+ 16-channel DAC
* High-speed DMM

+ An RS- 232C-based CAN interface
is located on a shelf behind the PC

Provides the most channels in a reasonable form
factor; space for future expansion

For high-resolution sampling
Need a DAC for generation of a brake signal
Actual measurements are fastest with this one

Module requires CAN interface for putting module
in test mode

63

It is helpful to make a wiring map
that shows how the DUT will connect
to your system. Table 5.3 shows how
to make one using a spreadsheet.

In the future, when it becomes
necessary to test a different DUT,

all you need to do is to create a new
spreadsheet and wire the new DUT
accordingly.

Since the system has many resources
available and they can be expanded
without changing the basic system
architecture, new DUTs are easily
accommodated. The spreadsheet is
constructed with DUT pin names
and numbers in the rows and system

Table 5.3. DUT wiring spreadsheet

resources in the columns. Since

star ground is physically located
outside of both the system and the
DUT, it shows up in both a row and
a column. Wires are connected from
the DUT pin number to the relevant
system resource. For example, the
battery input, Vbatt (J1-1), has

two wires attached to it—one to
general-purpose relay 7b and one to
general-purpose relay 6b, which puts
remote sense of the power supply
right at the DUT. In addition to DUT
pins, there are other internal system
connections that must be made, and
they are shown in a separate section
of the spreadsheet.

System Resource Name

DUT Pin Name Pin Nr Matrix Col GP Relay CANH CANL Star Ground
Vbatt J1-1 7b (PS+sense),
6b (PS+)

Power Gnd J1-2 X
Brake J1-3
Accelerator J1-4 10
CANH J1-5 X
CAN L J1-6 X
Pot1 Vref J2-1 6
Pot1 Wiper J2-2 5
Pot1 Ground J2-3 7.8
Pot2 Vref J3-1 2
Pot2 Wiper J3-2 1
Pot2 Ground J3-3 34
Motor + J3-4 12 3b (load 1)
Motor — J3-5 1" 2b (load 2)
Other connections
PS+Sense 7a
PS+ 6a
PS-Sense ba
PS — 4a
Motor Load + 3a
Motor Load — 2a
Earth Ground la
Switched Earth Ground 1b X
DUT Common X
Star Ground 5b (PS-sense),

13,14 4b (PS-) X X

64 5. Choosing Your Test-System Hardware Architecture and Instrumentation

Conclusion

Before you begin choosing test
instruments for your test system, you
need to make a series of high-level
decisions about your system archi-
tecture. The architecture you choose
for your test system will depend on
whether you plan to use it for R&D,
design validation, or manufacturing
test and on your budget and develop-
ment-time constraints, your existing
expertise and your measurement
throughput requirements.

Important questions to consider
include the following:

1. Should you use a rack-and-stack,
cardcage or hybrid (combination)
architecture?

2.1f you decide on card-based
instruments, should you use an
embedded PC (one that fits inside
an instrumentation cardcage) or an
external PC?

3. Which switch topology—simple
relay configurations, multiplexers
or matrices—and which switch
types (reed relays, FETS or arma-
ture relays) should you use?

4.Does a mass interconnect make
sense for your system?

5. Which power supplies and loads
should you choose?

6. Which measurement and stimulus
instruments should you choose?

7. What should you do to minimize
your hardware costs?

8. What should you do to minimize
development time?

9. What should you do to maximize
system throughput?

10. Which hardware vendor should
you use?

If you answer these questions care-
fully, you will help you ensure that
your test system produces reliable
results, meets your throughput
requirements, and does so within
your budget.

6. Understanding the Effects of Racking and System

Interconnections

Introduction

This chapter walks you through
important considerations for
arranging your test equipment in a
rack, including weight distribution,
heat dissipation, instrument accessi-
bility and operator ease of use. It also
explores ways to minimize magnetic
interference and conducted and radi-
ated noise to maximize measurement
accuracy.

How you arrange test-system
components can affect measurement
accuracy, equipment longevity and
operator ease of use and safety. This
chapter focuses on the important
decisions you’ll make if you are
building a system from rack-and-
stack test instruments or a mixture
of rack-and-stack instruments and
cardcage components, and you are
using a racking cabinet to hold

your system components. However,
many of the concepts we discuss are
applicable to bench-top systems that
are not racked.

Choosing racks and
accessories

Before you choose your rack cabinet
and accessories, you need to clearly
define the quantity and size of the
components your rack will house.

It is also important to be aware of
how users will interact with the
equipment, how the equipment will
be maintained and any special needs
such as environmental or security
considerations or the need to trans-
port your system after it is built.

To facilitate racking, most test
equipment manufacturers build test
equipment according to size stan-
dards established by the Electronic
Industries Alliance (EIA). The stan-
dard heights, widths and depths are
illustrated in Figure 6.1. Instrument
widths are usually specified as

full module width (MW) or half or
quarter MW.

Figure 6.1. Most test instruments are a whole number of standard rack units (RUs) high and
either a full, half or quarter module wide. A full module is typically 482.6 cm (19 inches) wide.

Height
I TEARU | sw0amm@225in) 0
| 6EIARU | 265.9 mm (105 in) H
| 5EIARU | 215mm @75in) H
| 4EIARU | 177.0 mm (7in) H
| 3EIARU | 1326mm (528in) H
| 2EIARU | 88.1mm (35in) H
1EIARU 441 mm (1.75in) H t
L] i
Width Depth
]
L .
Tmw <— 269.2mm —
(11in)D
~<— 3454 mm (14 in) D —|
Half Module_|||_|-lalf Module ~<—421.6 mm (17 in) D ——|
. L <— 4978 mm (20in) D —
—1/2 MW—>‘<—1/2 MW —s <5740 mm (23in)) —MMm

Quarter ||| Quarter [[{ Quarter (|| Quarter
Module [[{ Module ||| Module ||| Module

| | 1/4
| 3/4 MW W

65

When you calculate rack size, you
need to decide whether the system
controller (typically a computer)
and monitor also will be installed in
the rack to display test procedures
and results. If you are incorporating
a computer and monitor, will you
also need a keyboard or mouse for
operator inputs? If so, be sure to add
space for these items into your calcu-
lations, along with space for a work
surface. If there is a work surface,
consider the fact that it may prevent
the user from easily accessing any
instrument in the space directly
below the surface.

You may also want to consider
including space for accessory
drawers to provide convenient
storage for manuals, spare connec-
tors and other small accessories (see
Figure 6.2). Slide-out shelves are
useful for attaching loads and other
custom equipment, and they make
access easy.

Figure 6.2. Adding an accessory drawer to your
rack provides convenient storage for manuals,
spare connectors and other small accessories.

To maximize the re-usability of your
test system, keep your future needs
in mind when you choose your rack.
In the future, you may want to add
more instruments and more switches
and accommodate bigger devices
under test (DUTSs) that require more
power. To maximize your long-term
flexibility, allow at least 20 percent
extra room in your rack to accommo-
date instrument additions.

Other questions to consider:

* What are the physical constraints
of the location where your rack will
be situated? Will the floor support
your system’s weight? Are door-
ways into the facility tall and wide
enough for the rack you are consid-
ering? Is there adequate power,
and does the room have adequate
cooling to support the additional
heat created by the system?

Will your system need to be moved
to its final destination? If so
consider using multiple smaller
racks and limiting total rack
weight. If you need to ship the
system to another location, also
consider using ruggedized rack
furniture with strain relief fittings
and keep shipping concerns in
mind (shipping company or airline
size and weight requirements, etc.).

Do you need to be able to prevent
or limit access to your system? If
so, consider a rack with lockable
doors.

* Will you need rear access to your
equipment? If the only way to gain
rear access to your equipment is to
move your rack, you may want to
consider installing sliding shelves
instead. A sliding shelf allows you
to pull the instrument out of the
front of the rack for easier access
to the backside of equipment.

66 6. Understanding the Effects of Racking and System Interconnections

Instrument layout

When you plan the layout of equip-
ment in your rack, you will attempt
to achieve a number of objectives
simultaneously:

* Ensure rack stability by carefully
distributing the weight of system
components in the cabinet

* Make it easy for operators to use
the system and be productive

* Minimize magnetic interference

Provide adequate power and heat
dissipation

¢ Route power and measurement and
stimulus signals to the right place
as efficiently as possible

¢ Minimize conducted and radiated
noise

* Ensure operator safety

Plan your instrument layout on paper
before you start installing instru-
ments in your rack, since you will
probably change your layout multiple
times before you determine the
optimal layout.

Proper weight distribution

It is important to minimize the risk
of your rack tipping over to prevent
injury to operators and damage to
expensive equipment. To achieve

the greatest stability for your rack,
keep the center of gravity low by
placing the heaviest objects—typically
power supplies and signal genera-
tors—near the bottom of the rack (see
Figure 6.3). You will have to balance
this need with the need to make
frequently adjusted equipment easily
accessible to operators.

In addition to keeping the center of
gravity low, make sure the weight of
your system is centered (front-to-back
and side-to-side) as much as possible.
You may need to mount some system
components in the back of the rack,
rather than the front, to achieve this
balance.

When you calculate your system’s
center of gravity, be sure to factor in
the weight of the heaviest DUT you
will be testing. Your system needs

to be stable with and without the
DUT in place. Also consider how
weight distribution would change if
you were to remove an instrument
from the rack for maintenance, if the
operator were to lean on the work
surface or place heavy manuals on it,
or if heavy instruments on slide-out
rails were fully extended.

If you have allowed room in the rack
for future expansion, you will have
empty spaces in the rack. To improve
weight distribution, leave some
empty spaces near the top of the rack
for future addition of lightweight
instruments and some at the bottom
to allow for future addition of heavy
instruments. Use a filler panel to
cover the front of the rack to keep
dust out of your system and help
manage airflow. Filler panels come
in the same standard heights as test
instruments (see Figure 6.1).

Figure 6.3. Well balanced and poorly balanced test systems

Top heavy,

test system

=

Keeping the center of gravity low is
especially important if you will be
moving the rack to another location
after it is assembled, because the risk
of tipping increases when you move
it. Of course, the forces acting on
your system’s center of gravity will
change if the system is tilted, so be
sure to take this into consideration
if you intend to move your system

up a ramp as you move it to its final
location. When you design your

rack, keep in mind that ramps in
industrial facilities can be angled at
up to 15 degrees, so make sure the
rack cannot tip over at that angle.
When you push the rack up the ramp,
turn the rack so the heaviest part
(typically the front if your equipment
is front-mounted) faces uphill, if
possible.

Once your system is in its final
location, you can improve its stability
several ways. You can bolt it to the
floor, to a wall or to another test
rack. If you bolt it to another rack

or to a wall, make sure you do not
disturb the airflow and cooling and
that you leave enough room at the
back of the rack for servicing equip-
ment. Some racks are equipped with
retractable stabilization feet that you
can pull out of the bottom front of
the cabinet to prevent it from tipping
forward (see Figure 6.4).

poorly balanced

Well balanced test
system with low
center of gravity

_

Figure 6.4. This rack cabinet features a
retractable anti-tip foot that improves the rack’s
stability when it is loaded.

www.agilent.com/find/open
67

You also can use ballast, or weights
that fasten to the bottom of the
rack, to improve rack stability. Most
racking systems offer ballast as an
option. Ballast mounted at the back
of the rack cabinet helps keep the
cabinet from tipping forward if you
extend heavy, slide-mounted devices
from the rack or if you place a heavy
object on a work surface that extends
from the rack.

Adding ballast, using retractable
stabilization feet and bolting rack
cabinets to the wall or floor provide an
extra margin of safety, but you should
not rely on these measures to compen-
sate for poor weight balance in your
rack. Always make sure the center
of gravity of your system is as low as
possible and the weight of your system
is centered as much as possible.

Instrument accessibility and
operator ease of use

If your system is fully automated, you
may be concerned about instrument
accessibility only during system
development or troubleshooting. If
your system is operated manually

or semi-automatically, an operator’s
ability to access instruments and use
them easily during testing will be

an important consideration as you
decide how to rack your equipment.

Instrument access during develop-
ment and/or troubleshooting

When they are low on rack space,
system designers sometimes “bury”
instruments inside the rack behind
other instruments or mount them
backwards or sideways in the

rack. Before you choose this tactic,
determine if you will need to access
the instrument during system
development to verify operation or
for troubleshooting, repair or calibra-
tion. If you perform periodic system
self tests to verify operation, you may
need access to the front panel of an
instrument, making “buried” installa-
tion impractical.

In some situations, reverse-mounting
(or rear-mounting) instruments in a
rack makes sense. For example, if you
place the DUT interface panel (mass
interconnect or feedthrough panels)
in front of a switching subsystem
that has the plug-in cards facing the
interface panel, you minimize rack
space, because the switchbox and
mass interconnect are in the same
plane, and you reduce wire length
from the switching to the DUT. If

the switch box you choose has cards
in the rear, you can simply reverse-
mount the switchbox using the rails
on the rear of the rack, as illustrated
in Figure 6.5. If you choose to mount
an instrument in a non-standard
manner, be sure the cooling airflow is
not disturbed.

You may be able to rear mount
shallow instruments behind front-
mounted instruments to save rack
space. This space-saving technique
can be a practical way to reduce rack
height if you have a problem with low
doors or you need to meet airline size
requirements. However, mounting
instruments in both the front and
back of a rack can make servicing

the instruments in your rack more
difficult.

Figure 6.5. Rear-mounting the switching
subsystem reduces rack space and minimizes
cable lengths.

= S

=
,/-ﬂ/ =
= =
S EHE
— e
¢§<z|¢
Z 2B
¢%5§F
= 51= 1=
5?"-5
Z\iz
= 1=
%;I/ iz
A1
= = =
A HAHE
Z|i=1Z
“ iz
=izl 4
i -
;',:i -

68 6. Understanding the Effects of Racking and System Inte